基于主导点删除的多边形逼近方法
1. 引言
主导点检测在形状分析的轮廓方法中是一个重要的研究领域。通过连接主导点可以得到多边形逼近。在计算机视觉中,使用主导点有诸多优势,例如在航空图像中,主导点能指示人造物体;在时间序列里,主导点可用于计算连续图像对之间的位移。
多边形逼近在许多重要的平面物体识别应用中发挥着作用:
- 用于汽车车牌和飞机数字的识别。
- 用于地理信息的表示。
- 用于眼电生物信号处理。
- 用于形状理解。
- 通过提供一组特征点进行图像分析。
- 用于图像匹配算法。
本文提出了一种基于主导点删除的方法来获得高效的多边形逼近。首先,通过删除所有共线点来获取初始的主导点集。然后,使用可变距离作为阈值来删除冗余的主导点,并通过迭代过程改变阈值,直到满足最终条件。
2. 主导点检测
主导点通常被识别为具有局部极端曲率的点。在连续情况下,点的曲率定义为切线角度和弧长之间的变化率:
[κ = \frac{dθ}{ds}]
在离散空间中,已经提出了许多使用相邻点来估计曲率的算法,这些相邻点被指定为点的支持区域。以下是一些相关算法:
- Teh和Chin方法 :使用点 (P_i) 与弦 (P_{i - k}, P_{i + k}) 之间的距离 (d_{i,k}) 与弦长 (l_{i,k}) 的比率来确定支持区域,该比率可视为等同于曲率的度量。
- Ray和Ray方法 :提出了一种基于 (k -) 余弦的方法来估计支持区域。
- Corn