44、字符图像中泽尼克表示的集成公式与立体匹配问题中颜色信息聚合的比较研究

字符图像中泽尼克表示的集成公式与立体匹配问题中颜色信息聚合的比较研究

在当今的科技领域,模式识别和立体匹配问题是两个备受关注的研究方向。模式识别在众多领域有着广泛应用,而立体匹配则是计算机视觉中获取三维信息的关键技术。下面将详细介绍相关研究内容。

1. 模式识别中的矩不变量

模式识别旨在让机器观察环境,从背景中区分出感兴趣的模式,并对模式类别做出合理决策。其典型过程包括预处理、特征提取和分类,其中特征提取是关键环节。常见的特征提取方法有结构方法和全局方法,而矩不变量(MI)是广泛用于提取全局形状特征的方法之一,由Hu在1962年提出。MI可用于挖掘昆虫图像、字符图像等的全局形状特征。

然而,Hu的几何矩不变量在几何缩放方面存在一些问题。为解决这些问题,研究人员提出将纵横矩不变量(Aspect Moment Invariant)和联合矩不变量(United Moment Invariant)数学集成到泽尼克矩不变量(Zernike Moment Invariant)中,该方法能为经过各种方向和旋转的不等比例缩放图像提供良好结果。

2. 泽尼克矩不变量

在模式识别中,还有其他一些常用的矩函数,如勒让德矩、仿射矩、复矩和泽尼克矩等。泽尼克矩基于正交函数——泽尼克多项式,尽管计算复杂,但在提供特征能力和对噪声阶段的低敏感性方面表现出色。

泽尼克多项式在极坐标下的表示为:
[
V_{nl}(x,y)=V_{nl}(r,\varphi)=R_{nl}(r)e^{il\varphi}
]
其中,(i=\sqrt{-1}),(n)为正整数或空((n = 0, 1, 2 … \infty)),(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值