多值特征加权与虚拟医生系统的医学诊断推理
在当今的信息时代,内容推荐系统和医疗诊断系统都面临着各种挑战。内容推荐系统需要处理多值特征和不同领域的信息,以提供更精准的推荐;而医疗诊断系统则需要更高效地利用医生的知识,为患者提供初步诊断和健康服务。本文将介绍一种新的多值特征加权方法,以及基于物理和心理本体的虚拟医生系统(VDS)。
多值特征加权方法
在内容推荐系统中,特征加权是过滤过程的常用解决方案。传统的TF - IDF方法在处理多值信息或不同领域的信息时存在一些缺点。因此,提出了一种新的特征加权方法,该方法适用于定量和定性特征。
- 皮尔逊系数和DC系数 :皮尔逊系数的取值范围在[-1, 1]之间,它能提供关于依赖程度和依赖类型(直接或反向)的信息。为了简化,取其绝对值,使结果在[0, 1]区间内。由于Cramer V也在[0, 1]区间内,因此DC系数也会在该区间内,值为1表示最大依赖程度。
- 特征权重的计算 :一旦获得了因素$H_j^ $和$DC_{uj}$,系统将计算特征$c_j$的权重$w_{uj}$,计算公式为$w_{uj}=DC_{uj}\cdot H_j^ $。由于权重向量${w_i}$必须满足$\sum w_i = 1$,最终的权重向量$W_u^ $由下式给出:
$W_u^ =\left{w_{uj}^ |j = 1,\cdots,m,w_{uj}^ =\frac{w_{uj}}{\sum_{i}w_{ui}}\right}$ - 示例