工业环境中的智能调度与规划技术解析
在工业生产和管道运输等领域,高效的调度和规划是提升生产效率、降低成本的关键。本文将深入探讨两种重要的技术:基于多目标遗传算法(MOGA)的批次排序模型以及基于时间约束的规划代理,为工业环境中的调度和规划问题提供解决方案。
基于MOGA的管道网络批次排序
在管道网络中,批次进入的顺序是一个复杂的组合问题。为了解决这个问题,提出了一种MOGA模型,该模型在实际场景中得到了验证。
编码与初始化
- 编码方法 :通过分配块生成批次的编码,位置对应测序顺序。例如,图2展示了染色体表示(解决方案),其中进入网络的第三批是批次#5。
- 初始化过程 :从输入数据提供的初始列表中随机生成“n”个个体。如果生成的个体不可行,则将其丢弃并替换为新的个体。
适应度分配
使用混合整数线性规划(MILP)模型来确定编程期间的操作活动调度。该模型为每个序列计算泵送和接收操作的持续时间(makespan)、批次停顿和延迟的时间,以及根据时间窗口在每个节点交付或接收批次的提前或延迟情况。根据这些计算结果,按照多个标准对解决方案进行排序。
交叉和变异算子
- 交叉算子 :使用两个父代(不同的解决方案)生成一个或两个子代(新的解决方案)。本文使用均匀交叉,对于第一个子代的每个位,以一定概率p决定哪个父代贡献该位置的值,第二个子代则从另一个父代接收该位。
- 变异算子