工业环境中的智能规划与优化:TB - CBP - BDI 与遗传算法应用解析
1. TB - CBP - BDI 算法概述
TB - CBP - BDI 算法的第一阶段是学习阶段。不过,该阶段仅在代理将先前执行的解决方案存储在解决方案队列中时才会执行。这些解决方案是在审议阶段结束后立即存储的,而审议阶段只有在代理的问题队列中有待解决的问题时才会启动。这种配置使得代理可以仅进行学习(无需解决方案,且代理有足够时间思考先前的决策)、仅进行审议(没有先前的解决方案可供参考,但有新问题需要解决),或者两者同时进行。
2. 工业环境中的多智能体系统案例研究
为了评估 TB - CBP - BDI 代理的行为,在工业环境中开展了一个案例研究。该案例构建了一个多智能体系统,旨在对负责监督制造环境的员工活动进行控制。系统中的 TB - CBP - BDI 代理会根据工作班次、设施内的覆盖距离以及可用的保安人员,为保安计算监控路线。系统还具备根据可用保安人员自动重新规划路线的能力,并且可以使用射频识别(RFID)技术跟踪工人的活动(路线完成情况)。
系统由五种不同类型的代理组成:
- 规划代理(Planner Agent) :自动生成监控路线,并将其发送给管理代理,以便分发给保安人员。
- 保安代理(Guard Agent) :与每个个人数字助理(PDA)关联,管理便携式 RFID 阅读器,以获取每个控制点的 RFID 标签信息。与控制代理通信,检查分配的监控路线是否完成、获取新路线,并通过 Wi - Fi 发送 RFID 标签信息。
- 管理代理(M