73、模糊数据仓库与移动网络干扰最小化技术研究

模糊数据仓库与移动网络干扰最小化技术研究

模糊数据仓库中的数据处理

模糊测度的运算

在模糊数据仓库中,存在一些特定的运算规则。对于清晰测度和模糊测度,有如下运算关系:
- (m_{A/B} = m_A/m_B)
- (m_{A/B} + β_{A/B} = (m_A +β_A)/m_B)
- (m_{A/B} - α_{A/B} = (m_A - α_A)/m_B)

这些运算不仅适用于清晰测度,还能应用于 L - R 模糊区间。例如,对于两个由四个参数表示的 L - R 模糊区间 (A_1 = (m_{A1}, n_{A1}, α_{A1}, β_{A1})) 和 (A_2 = (m_{A2}, n_{A2}, α_{A2}, β_{A2})),它们的和为:
(A_1 + A_2 = (m_{A1}, n_{A1}, α_{A1}, β_{A1}) + (m_{A2}, n_{A2}, α_{A2}, β_{A2}) = (m_{A1} + m_{A2}, n_{A1} + n_{A2}, α_{A1} + α_{A2}, β_{A1} + β_{A2}))

逻辑运算符

为了对模糊数据进行比较和排序,以及实现最大(FMAX)和最小(FMIN)聚合函数,需要定义模糊数的多数和少数运算符。
- 多数关系 :基于比较模糊数隶属函数的相应参数来定义。首先比较模态值,若相等则比较右扩展,若右扩展也相等则比较左扩展。
- 少数关系 :计算方式与多数关系类似,但当模态值相等时,先比较左扩展,若左扩展相等再比较右扩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值