
论文
文章平均质量分 89
b_dxac
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Multi-level Feature Fusion Networks with Adaptive Channel Dimensionality Reduction for Remote Sens
基于自适应信道降维的多级特征融合网络用于遥感场景分类由于高分辨率遥感图像内容复杂多样,对其进行分类是一项具有挑战性的工作。最近,卷积神经网络(CNNs)被用来解决这一任务。然而,由于VHR图像中存在杂波和小目标,cnn不能完全满足场景分类的需要。为了解决这些问题,本文提出了一种新的自适应信道降维的多级特征融合网络用于遥感场景分类。针对高维特征,设计了一种自适应信道降维方法。在此基础上,引入多级特征融合模块,实现了特征的高效融合。在三个广泛使用的数据集上的实验表明,我们的模型在精度和稳定性方面优于几种先进原创 2021-05-07 11:35:36 · 814 阅读 · 0 评论 -
论文翻译-Comparative Analysis of Multiple Deep CNN Models for Waste Classification
垃圾分类的多种深度CNN模型的比较分析摘要:垃圾在错误的地方是一种财富。我们的研究重点是分析自动垃圾分类和收集的可能性,以帮助进一步的回收过程。目前正在采用各种方法来管理废物,但效率不高,需要人为干预。自动废物分离技术可以填补这一空白。该项目测试了著名的深度学习网络架构,利用结合了自己的努力和垃圾网的数据集进行垃圾分类。卷积神经网络用于图像分类。以垃圾箱的形式建起来的硬件是用来把垃圾分成不同的隔间的。这项研究将节省宝贵的时间,并在废物管理领域引入自动化。城市固体废物是一种巨大的可再生能源。这种局面对政府原创 2021-03-26 21:43:28 · 319 阅读 · 0 评论 -
论文翻译——Comparing Deep Learning And Support V ector Machines for Autonomous Waste Sorting
比较深度学习和支持向量机的自动垃圾分类摘要:垃圾分类是将垃圾分类成不同类型的过程。目前的趋势是有效地对垃圾进行分类,以便适当地处理。必须尽早进行分离,以减少其他物质对废物的污染。这一过程自动化的需要对垃圾处理公司来说是一个重要的促进因素。本研究旨在通过应用机器学习技术,仅从垃圾图片中识别垃圾类型,实现垃圾分类的自动化。使用了两种流行的学习算法:卷积神经网络(CNN)深度学习和支持向量机(SVM)。每种算法都创建了不同的分类器,利用256 x 256彩色png图像将废物分为3大类:塑料、纸张和金属。比较了原创 2021-03-25 21:05:53 · 463 阅读 · 0 评论 -
论文翻译——YOLOv3: An Incremental Improvement
摘要翻译:我们向YOLO提供一些更新!我们做了一些设计上的小改变来让它更好。我们还训练了这个非常棒的新网络。它比上次大了一点,但更准确。不过它还是很快的,别担心。在320×320 YOLOv3运行在22 ms 28.2 mAP,与SSD一样准确,但三倍快。当我们看旧的。5 IOU地图检测度量YOLOv3是相当好的。它在Titan X上实现57.9 AP50in 51 ms,相比之下,RetinaNet的57.5 AP50in 198 ms,性能类似,但更快3.8倍。和往常一样,所有代码都可以在线访问原创 2020-09-28 14:48:52 · 483 阅读 · 0 评论 -
论文翻译——YOLO9000: Better, Faster, Stronger
摘要翻译:我们介绍YOLO9000,一个最先进的,实时的物体检测系统,可以检测超过9000个物体类别。首先,我们提出了对YOLO检测方法的各种改进,既有新颖的,也有来自之前工作的改进。改进后的YOLOv2在PASCAL VOC和COCO等标准检测任务上是最先进的。使用一种新的,多尺度的训练方法,同样的YOLOv2模型可以运行在不同的大小,提供了一个简单的折衷速度和准确性。在67帧每秒时,YOLOv2在2007 VOC上得到76.8的映射。在40帧/秒的时候,YOLOv2得到了78.6的贴图,超过了最原创 2020-09-28 10:58:00 · 564 阅读 · 0 评论 -
论文翻译:You Only Look Once: Unified, Real-Time Object Detection
摘要翻译:提出了一种新的目标检测方法YOLO。以前关于目标检测的工作使用分类器来执行检测。相反,我们将目标检测框架为一个回归问题,以特定的分离边界盒和相关的类概率。单个神经网络在一次评估中直接从完整的图像预测边界框和类概率。由于整个检测管道是一个单一网络,因此可以对其检测性能进行端到端的直接优化。We present YOLO, a new approach to object detection. Prior work on object detection repurposes cla.原创 2020-09-28 09:23:08 · 504 阅读 · 0 评论 -
论文翻译——Feature Pyramid Networks for Object Detection
摘要:特征金字塔是识别系统中用于检测不同尺度目标的基本组成部分。但是最近的深度学习对象检测器避免了金字塔表示,部分原因是它们是计算和内存密集型的。在这篇论文中,我们利用深卷积网路固有的多尺度金字塔层级,以边际额外成本建构特徵金字塔。提出了一种具有横向连接的自顶向下体系结构,用于构建各种尺度的高层语义特征图。这种被称为特征金字塔网络(FPN)的体系结构,作为一种通用的特征抽取器在一些应用中显示出了显著的改进。在基本更快的R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没原创 2020-07-05 20:51:09 · 1047 阅读 · 0 评论 -
论文翻译——Weighted Residuals for Very Deep Networks
翻译:最近,深度剩余网络在许多具有挑战性的计算机视觉任务中表现出了引人注目的性能。然而,原有的残差结构仍然存在一些缺陷,使得其难以在深度很深的网络上收敛。在本文中,我们引入了一个加权残差网络来解决ReLU和元素加法与深度网络初始化之间的不兼容性问题。加权残差网络能够有效地结合不同层次的残差。随着深度从100+层增加到1000+层,所提出的模型在准确性和收敛性方面都有持续的改善。加权残差网络与原始残差网络相比,计算量和GPU内存负担基本没有增加。采用投影随机梯度下降法对网络进行优化。在CIFAR-10上的原创 2020-06-23 10:07:22 · 665 阅读 · 0 评论