YOLOv8太强了, 教你自定义训练滑动验证码

本文介绍了如何在Roboflow平台上使用YOLOv8进行图片标注、模型训练,并展示了如何在自定义验证码数据集上进行训练、验证和预测。作者提供了详细步骤,包括环境设置、模型下载和使用Python代码进行预测示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文看了YOLOv8已至,精度大涨!教你如何在自定义数据集上训练它 来的灵感,

先去Roboflow: Give your software the power to see objects in images and video注册一个账号,按照上文的内容进行图片注释和创建,你也可以下载别人已经弄好的图片:

环境和数据准备工作

点击然后下载滑动验证码图片

如果你安装了coda环境的话,可以创建一个环境,没有的忽略

conda create --name yolo python=3.10 #创建环境
conda activate yolo #进入环境

安装YOLOv8

pip install ultralytics

安装roboflow

pip install roboflow

新建目录yolo8

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值