一键部署NSFW检测模型:快速识别并过滤敏感图片内容

以下是对nsfw_detector的简单介绍:

  • nsfw_detector是一个 NSFW 内容检测器,支持快速docker私有部署,提供API服务
  • 低资源消耗,2GB内存即可运行该模型,多核CPU自动调度加速推理 - 可以识别多种文件类型:图片、PDF、视频、压缩文件、Doc/Docx
  • 基于专门训练的 NSFW 模型识别,准确度较好
  • 该工具的开源地址:https://github.com/tmplink/nsfw_detector,使用的模型地址参考:https://huggingface.co/Falconsai/nsfw_image_detection

Docker一键部署实操示例:一键部署NSFW检测模型:快速识别并过滤敏感图片内容https://blog.luler.top/d/41

 

使用:网络需要在图像和输出概率(评分0-1)之间过滤不适合工作的图片。评分<0.2表示图像具有较高概率是安全的。评分>0.8表明极有可能是不适合工作(NSFW)图像。我们建议开发者根据用例和图像类型的不同选择合适的阈值。根据使用情况、定义以及公差的不同会产生误差。理想情况下,开发人员应该创建一个评价集,根据“什么是安全的”对他们的应用程序进行定义,然后适合ROC曲线选择一个合适的阈值。结果可以通过微调你的数据/ uscase /定义NSFW模型的改进。我们不提供任何结果的准确性保证。使用者适度地结合机器学习解决方案将有助于提高性能。模型描述:我们将不适合工作的图片NSFW)作为数据集中的积极对象,适合工作的图片作为消极对象来进行训练。所有这些被训练得图片都被打上了特定的标签。所以由于数据本身的原因,我们无法发布数据集或者其他信息。我们用非常不错的名字叫“CaffeOnSpark”的架构给“Hadoop”带来深度学习算法,且使用Spark集群来进行模型训练的实验。在此非常感谢 CaffeOnSpark 团队。深度模型算法首先在 ImageNet 上生成了1000种数据集,之后我们调整不适合工作(NSFW)的数据集比例。我们使用了50 1by2的残差网络生成网络模型模型通过 pynetbuilder 工具以及复制残余网络的方法会产生50层网络(每层网络只有一半的过滤器)。你可以从这里获取到更多关于模型产生的信息。更深的网络或者具有更多过滤器的网络通常会更精确。我们使用剩余(residual)网络结构来训练模型,这样可以提供恰到好处的精确度,同样模型在运行以及内存上都能保持轻量级。 标签:opennsfw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值