【数据结构和算法】-动态规划爬楼梯

动态规划(Dynamic Programming,DP)是运筹学的一个分支,主要用于解决包含重叠子问题和最优子结构性质的问题。它的核心思想是将一个复杂的问题分解为若干个子问题,并保存子问题的解,以便在需要时直接利用,从而避免重复计算,提高算法效率。

原理

  • 动态规划算法将一个复杂的问题分解为若干个子问题,并保存每个子问题的解。当需要求解某个子问题时,如果之前已经求解过,则可以直接利用之前的解,从而避免重复计算。
  • 通过求解子问题的最优解来获得原问题的最优解。子问题的解通常存储在表格中,表格的行和列代表问题的不同阶段和状态。

基本步骤

  • 确定状态:首先,需要明确问题的状态表示。状态通常是与问题求解相关的变量的集合,它们的变化描述了问题的进展。
  • 状态转移方程:找到子问题之间的关系,并建立状态转移方程。状态转移方程描述了从一个状态转移到另一个状态所需的条件和结果。
  • 初始化边界条件:确定基本情况的解,为后续的状态转移提供依据。这通常涉及确定初始状态和某些特殊情况下的解。
  • 逐步推导:根据状态转移方程,从小规模问题开始逐步推导,直到求解出原问题的最优解。

应用场景

  • 动态规划算法适用于具有重叠子问题和最优子结构性质的问题。例如,背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题等。
  • 在实际应用中,动态规划算法的效率通常比其他算法设计思想更高,特别是在问题规模较大的情况下。

实现方式

  • 动态规划算法可以用多种编程语言实现,如C++、Python等。实现时,需要定义一个表格来存储子问题的解,并根据状态转移方程逐步推导原问题的解。
  • 递推关系是从次小的问题开始到较大的问题之间的转化,因此动态规划往往可以用递归程序来实现。但由于递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势。

三要素

  • 在确定动态规划算法时,最重要的是确定三个要素:问题的阶段、每个阶段的状态以及从前一个阶段转化到后一个阶段之间的递推关系。这三个要素共同构成了动态规划算法的基本框架。

背包问题实例

假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。

确定状态

首先我们的理解什么 是状态,状态被定义为:与问题求解相关的变量集合,描述了问题的进展。这是什么意思呢?
状态通常定义为一个二维数组 dp[i][j],其中 i 表示前 i 个物品,j 表示背包的容量为 j。dp[i][j] 表示在前 i 个物品中选择一些物品放入容量为 j 的背包中所能获得的最大价值。
这就是状态,状态就是某一时刻个体或系统的特定情况,而程序要做的就是用合适的数据结构来表示这种情况。我们可以画一个图:
在这里插入图片描述
当背包里有前3个物品时的状态:d[3][10] = 14,即放前三个物品在容量为10的包里,容量之和小于10,所以都能放下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前鼻音太阳熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值