关于YOLOv1理解的总结

YOLO(You Only Look Once)是一种实时目标检测系统,通过将图像划分为网格,每个网格预测物体类别和边界框。YOLOv1通过单次CNN前传实现高效检测,每个网格预测两个边界框,用对象中心点所在网格负责检测,其他网格不参与。置信度由包含对象的概率乘以IoU计算。相关解读文章包括YOLOv1的深入理解、小白介绍、深层解读和论文笔记。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 YOLO相关内容

YOLO即为“you look only once”,通过单次图像输入,即可检测出图像里包含的对象
论文出处:You Only Look Once: Unified, Real-Time Object Detection
相关的解读文章很多,包括:

2 YOLO的总结(个人理解,仅作参考)

模型思路包括:

  • YOLO是将基于滑动窗口+CNN的目标检测方法进行改进,提升检测效率
  • 具体操作就是将图像缩放为同样规格,然后划分网格,分别进入CNN模型,进行判别
  • 判别输出包括:对象类别+分类置信度+包含对象的矩形框的位置及尺寸
  • 根据输出设置相应的cost function就包含上述的几个部分

模型特点包括:

  • 对象中心点所在网格负责判别对象,其他网格对该对象的判别均为0
  • 预测包含对象的矩形框,论文中每个网格会预测2个矩形框,避免传统方法中网格回归的麻烦
  • 采用【包含对象的概率(0或1)*IoU(预测矩形框和实际矩形框的交并比)】作为置信度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值