1 YOLO相关内容
YOLO即为“you look only once”,通过单次图像输入,即可检测出图像里包含的对象
论文出处:You Only Look Once: Unified, Real-Time Object Detection
相关的解读文章很多,包括:
2 YOLO的总结(个人理解,仅作参考)
模型思路包括:
- YOLO是将基于滑动窗口+CNN的目标检测方法进行改进,提升检测效率
- 具体操作就是将图像缩放为同样规格,然后划分网格,分别进入CNN模型,进行判别
- 判别输出包括:对象类别+分类置信度+包含对象的矩形框的位置及尺寸
- 根据输出设置相应的cost function就包含上述的几个部分
模型特点包括:
- 对象中心点所在网格负责判别对象,其他网格对该对象的判别均为0
- 预测包含对象的矩形框,论文中每个网格会预测2个矩形框,避免传统方法中网格回归的麻烦
- 采用【包含对象的概率(0或1)*IoU(预测矩形框和实际矩形框的交并比)】作为置信度