
机器学习
李家之宝树
我本是一名合格的工科男!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
特征选择中PCA与KLT变换的区别
简单概括:K-L变换(Karhunen–Loève transform)应用范围比PCA广,可用于连续信号分析,离散信号分析,变换矩阵可包含二阶矩阵、协方差矩阵、自相关矩阵、总类内离散度矩阵等等。PCA变换(principal component analysis)又叫离散K-L变换,根据名称可知,在做特征分析时,PCA变换针对的是离散信号协方差矩阵,所以在这种情况下,PCA变换就等同于K...原创 2019-05-30 11:39:17 · 1786 阅读 · 0 评论 -
SVM(support victor machine,支持向量机)多分类机器学习的笔记
SVM(support victor machine,支持向量机)小记SVM特点:可以对小样本进行分类,也是其缺点,对大规模训练样本会出现过拟合。SVM训练集测试集的数据比值最好为3:1或者4:1,且多分类时,每种分类的训练样本数量应该相差不大。多分类SVM:调用函数有要调用多分类SVM必须先要下载一个库:libsvm-3.23svmpath='D:\Program File...原创 2019-05-09 14:52:25 · 535 阅读 · 0 评论 -
机器学习:特征提取与特征选择意义及目的
•特征提取与选择的基本任务:是研究如何从众多特征中求出那些对分类识别最有效的特征,从而实现特征空间维数的压缩,即获取一组“少而精”且分类错误概率小的分类待征.目的:使在最小维数特征空间中异类模式点相距较远(类间距离较大),而同类模式点相距较近(类内距离较小)。 要求: (1)具有很大的识别信息量。即所提供的特征应具有很好的可分性,使分类器容易判别。(2)具...原创 2019-05-30 11:50:36 · 18250 阅读 · 0 评论 -
机器学习:特征选择与特征提取
特征选择与特征提取目的都是:降维,减少冗余特征选择:将N维特征 [X1,X2,........XN]选择其中最有效且独立的K特征子集来表征样本的有效性 [Xs1,Xs2,........Xsk] .特征提取:将提取的k维特征子集 [Xs1,Xs2,........Xsk] 映射到新特征[Ye1,Ye2, ...,Yen]上起到进一步的降维...原创 2019-05-30 12:10:43 · 3399 阅读 · 1 评论