(2020.11.09)
1.哪些企业适合建设数据中台
- 企业最好有一定的信息化基础,沉淀了数据,实现了业务数据化过程;
- 企业业务复杂,有丰富的数据维度和多个业务场景,特别是多业态型集团企业;
- 企业有数字化转型、精细化运营的需求;
2.数据应用成熟度模型
- 第一阶段:统计分析阶段,该阶段主要以业务需求为导向,通过IT系统的建设,实现业务过程的流程化、自动化。该过程可能会有少量的数据记录,但并没有以数为导向的积累数据,主要通过单一维度的少量数据进行业务的总结。
- 第二阶段:决策支持阶段,该阶段主要是在企业业务系统建设的基础上,基于业务目标有意识地进行数据的采集、管理、分析,通过企业数据仓库建设,为企业业务提供决策支撑。
- 第三阶段:数据驱动阶段,该阶段企业基于海量数据积累,利用大数据、机器学习和深度学习等技术进行数据的深度挖掘和分析,通过对多源、异构的全域数据的汇聚、打通,跨界考虑数据价值的应用,通过数据驱动业务发展,为业务应用提供数据服务,实现业务和数据的深度融合。
- 第四阶段:运营优化阶段,该阶段汇聚各类企业数据资产、消除物理孤岛、通过Mapping能力将数据进行融合、消除逻辑孤岛,构建企业统一的数据资产,并进行数据治理,使数据资产符合生成要求,通过数据服务化的能力快速服务于业务;同时,针对数据资产的使用和内容进行运营优化,以使得企业数据资产越用越有价值,真正成为企业的核心资产,这种能力的建设定义为数据中台。完成数据中台建设后,要保障数据资产在日常过程中的真实、稳定、准确、可用和高效,以实现数据资产价值最大化;为实现这一目标,要满意以下5个条件
a. 能够追溯数据资产的形成过程,包括涵盖了哪些数据来源,经理了怎样的加工环节,设计哪些业务环节和部门等;
b. 能及时获取到数据资产当前的状态,尤其是数据质量和安全,如更新频率、合规性、空置率等;
c. 能知道数资产被哪些业务调用了,以通过建立数据闭环了解和追溯数据资产所带来的业务价值;
d. 能够对整个数据中台从数据采集到数据应用的整个链路建立监控体系,便于及时发现和排除故障,保障数据资产的稳定性;
e. 建立丰富的数据内外部共享和服务渠道,实现数据价值的释放和交换;
成熟度阶段 | 企业战略定位 | 数据积累情况 | 数据维度 | 数据组织形式 | 数据质量 | 数据应用场景 | 数据应用工具 | 企业组织架构 |
统计分析阶段 | 无战略驱动,纯业务驱动 | 少量业务数据积累 | 数据维度单一 | 数据无组织,对各业务数据分散存储管理 | 无数据质量管控 | 简单的业务统计报表为主 | 以报表系统模块和Excel为主 | 无数据相关部门和职位,以IT和业务部门相关职位为主 |
决策支持阶段 | 开始通过数据支撑经营决策 | 注重业务过程中的数据积累、收集 | 数据维度逐渐丰富 | 以面向业务主体的指标体系为形式进行数据组织 | 开始实施数据质量管控,对相关数据进行清洗加工 | 为企业管理提供决策支持 | 以数据仓库、数据开发和专业化的BI报表工具为主 | 开始出现数据分析师,可能会设立专门的数据部门和数据价值挖掘等相关的职位 |
数据驱动阶段 | 开始将数据作为企业重要资产,通过跨界数据应用为企业提供数据服务 | 各业务数据积累初具规模,且数据量越来越大 | 全域数据融合,数据维度更加丰富 | 开始业务设计的相关数据的汇聚,打通,进行全域数据组织 | 开始进行数据标准化建设,对数据质量的管控更加严格 | 实现数据与业务的深度融合,同构数据驱动业务发展 | 通过Hadoop生态体系为代表的批计算、流计算、即席分析、在线查询等大数据处理技术及机器学习、深度学习算法进行数据汇聚开发 | 开始设立独立的大数据部门和大数据工程师、算法工程师、数据可视化工程师、数据科学家等相关职位 |
运营优化阶段 | 企业开始建设数中台,数据中台战略持续运营优化 | 随着数据闭环的构建,企业数据量快速增大 | 数据维度更加完善 | 建立数据应用闭环 | 形成一套完善的数据质量管理规范及管理流程 | 建议一套统一的数据服务体系,为企业业务优化和业务创新提供数据服务支撑 | 简历一套体系化的数据汇聚、加工、管理、服务及应用体系,逐渐实现大数据能力工具化、工具平台化、平台智能化 | 在管理层设置数据管理委员会,成立专门的数据资产运营部门 |