Python图像处理之小波去噪原理:硬阈值VS软阈值

本文探讨Python中利用小波变换进行图像去噪的原理,重点讲解软阈值与硬阈值的区别。通过VisuShrink算法举例,展示如何在实践中应用小波去噪,同时列举了多种图像去噪方法,包括空间域和变换域的处理技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在之前的文章(例如文献【4】)中,我们给出了图像的退化模型。因为本文的主要话题是去噪,所以现在仅讨论噪声引起的图像退化问题:

f'(x,y)=f(x,y)+n(x,y)

这也是最简单的噪声模型——加性噪声(additive nosie)模型,对此有三个基本假设:

  • 噪声是加性的;
  • 噪声是随机的信号(通常情况下即均值为零的高斯白噪声);
  • 噪声是高频信号(可以参考文献【2】中的解释);

在之前的文章(例如文献【2】)中,我们已经体验了在Python中利用小波变换对图像进行去噪的效果,本文将更加侧重背后的原理。特别地,我们将理清软阈值与硬阈值等相关的概念。下面所示为利用小波变换对图像做去噪处理的一个基本框架。欢迎关注白马负金羁的博客 http://blog.csdn.net/baimafujinji,鉴于目前网上盗贴、洗稿等现象严重,为保证公式、图表得以正确显示,强烈建议你从该地址上查看原版博文。本博客主要关注方向包括:数字图像处理、算法设计与分析、数据结构、机器学习、数据挖掘、统计分析方法、自然语言处理。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值