运筹学与库存管理中的数学模型研究
1. 多商品网络流问题概述
在运筹学领域,将众多商品通过共享网络从配送点运输到目标点是一个关键问题,其中减少运输时间(成本)是核心考量。著名的最快流问题旨在以最短可行时间满足所需需求。对于单商品问题,可在强多项式时间内解决;但对于多商品问题,则是NP难问题。不过,基于长度有界函数的多项式时间近似技术已被发现。车道反转技术是改善双向网络最快运输时间的重要工具,并且已被应用于长度有界近似中。
1.1 非对称遍历时间的QMCCF问题研究
研究了具有非对称遍历时间的QMCCF(快速多商品逆流)问题,提出了其数学模型,并给出了多项式时间近似算法。该研究显著减少了路由时间。通过分析先前恒定运输时间问题的结果,将这些策略扩展到与流量相关的运输时间是一个值得探索的方向。此研究成果具有理论和实践意义。
1.2 不同运输时间情况对比
情况 | 有逆流的LB(长度界限) | 对称运输时间(ST) | 非对称运输时间(AT) |
---|---|---|---|
6 | 5 |
2. 易腐商品生产库存模型
2.1 模型背景
需求总是根据客户的需求和偏好波动,难以预测。对于新上市的商品,如化妆品、具有新技术的电子产品、时尚服装等,初期需求较高,但