计算机视觉 特征检测与匹配 大规模匹配和检索

大规模图像检索与实例识别:计算机视觉中的特征检测与匹配
本文介绍了计算机视觉中的大规模图像检索和实例识别问题,探讨了基于内容的图像检索(CBIR)技术,包括特征检测(如SIFT)、聚类方法(如k-means和词汇树)、信息检索策略(如查询扩展和倒排索引)。文章还讨论了深度学习在特征检测和匹配中的应用,以及不同检索架构的发展,强调了在大规模数据集上的实时性能和准确性。

        随着数据库中对象的数量开始增长(可能数十亿个对象或视频帧),将新图像与每个数据库图像匹配所需的时间可能会变得令人望而却步。所以不能一次比较一张图像,而是需要一些技术来快速将搜索范围缩小到几个可能的图像,然后可以使用更保守的验证方法进行比较。

        快速找到文档之间的部分匹配的问题是信息检索(IR),Information Retrieval中的核心问题之一。在计算机视觉中,在大型集合中找到特定对象的问题称为基于内容的图像检索 (CBIR),Content-based image retrieval或实例检索。快速文档检索算法的基本方法是预先计算单个单词和它们出现的文档(或网页或新闻故事)之间的倒排索引。更准确地说,文档中特定单词的出现频率用于快速找到与特定查询匹配的文档。

        Sivic 和 Zisserman (2009) 是第一个将 IR 技术应用于视觉搜索的人。在他们的视频谷歌系统中,首先在所有视频帧中检测仿射不变特征,他们使用Harris特征点周围的形状适应区域进行索引和最大稳定极值区域,如下图a所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值