
深度学习中python的常见语法
对深度学习模型中常用的python语法进行详细说明和代码介绍
我爱7西瓜
实迷途其未远,觉今是而昨非。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python数组切片
在NumPy、PyTorch等数组和张量处理库中,如[:, 0::2] 是一种切片(slicing)语法,用于选择数组或张量的子集。这里的 : 和 0::2 分别表示对行和列的切片操作。[:, 0::2]::这是一个省略的切片表示,它意味着选择所有。0::2:这是一个步长为2的切片操作,从索引0开始。具体来说,start:stop:step 表示从 start 索引开始,到 stop 索引之前结束(不包括 stop),每隔 step 个元素取一 个。原创 2024-07-03 15:19:10 · 972 阅读 · 0 评论 -
torch.reshape()的用法
torch.reshape() 是 PyTorch 中用于改变张量形状的函数。它返回一个新张量,其数据与输入张量相同,但具有指定的形状。如果可能,该函数将返回输入张量的视图(即不复制数据),但如果无法返回视图,则会返回数据的副本。改变形状时,元素不能变。原创 2024-07-03 09:48:14 · 627 阅读 · 0 评论 -
F.pad函数的用法
(1)F.pad 是 PyTorch 中 torch.nn.functional 模块(通常通过别名 F 导入)的一个函数,用于在输入张量的边界上填充值。这在处理图像、序列数据或其他需要特定尺寸输入的神经网络模型时非常有用。(2)函数形式:torch.nn.functional.pad(input, pad, mode='constant', value=0)(3)pad (Sequence[int, tuple[int, int], list[int, int]]): 定义在每个维度上填充大小的序列。原创 2024-07-01 10:31:00 · 1459 阅读 · 0 评论 -
torch.cat()的用法
在PyTorch中,torch.cat()函数用于将多个张量(tensors)连接在一起。这个函数接受一个张量序列(通常是一个列表或元组)和一个维度参数dim,并将所有张量沿着指定的维度进行连接。沿着维度0连接,按照行连接沿着维度1连接,按照每列连接,把所有列连接成一行。原创 2024-07-01 10:21:43 · 280 阅读 · 0 评论