激活函数ReLU,Sigmoid,tanh,softmax性质讲解及使用matplotlib绘制

Sigmoid及tanh

sigmoid及tanh的函数图像较为相似,它们的公式如下

Sigmoid公式

\sigma(x) = \frac{1}{1 + e^{-x}}

tanh公式

\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}

Sigmoid及tanh性质解析

Sigmoid和tanh作为激活函数都可以有效完成非线性映射的功效,其中Sigmoid经常作为2分类的神经网络的输出层的激活函数,由于其非线性映射会将输出值转换到0-1的区间内.

但是Sigmoid和tanh也有一定的缺陷,在值偏离0较多的时候,这两者的导数会越发近似于0,也就会造成梯度连乘后梯度消失的现象

Sigmoid及tanh函数图像及导数绘制

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn.functional as F

if __name__ == '__main__':
    device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
    x = torch.linspace
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值