Problem Description
输入n,接下来有n个数,问你里面有多少个是素数。
思路:
我分别用了三种不同的方法,测试了一下时间复杂度。i*i<=num 没有 sqrt(num) 快,这个得注意,,复杂度为O(n*sqrt(n))。Miller_Rabin速度最快,也是为了这个算法发的博客。
//超时代码
#include<bits/stdc++.h>
using namespace std;
int solve(int num)
{
int i;
for(i = 2; i * i <= num; i++)
{
if(num % i == 0) break;
}
if(i*i > num) return 1;
else return 0;
}
int main()
{
int n, num;
while(~scanf("%d", &n))
{
int ans = 0;
while(n--)
{
scanf("%d", &num);
if(solve(num)) ans++;
}
printf("%d\n", ans);
}
return 0;
}
//Time 249ms
#include<bits/stdc++.h>
using namespace std;
int solve(int num)
{
int i;
int t = sqrt(num);
if(t*t > num) t--;
for(i = 2; i <= t; i++)
{
if(num % i == 0) break;
}
if(i > t) return 1;
else return 0;
}
int main()
{
int n, num;
while(~scanf("%d", &n))
{
int ans = 0;
while(n--)
{
scanf("%d", &num);
if(solve(num)) ans++;
}
printf("%d\n", ans);
}
return 0;
}
Miller-Rabin
费马小定理:对任意a和任意质数p,有a^p ≡ a(mod p)。当p不能整除a时,进一步有a^(p-1) ≡ 1(mod p)。
二次同余方程:x^2 ≡ 1(mod n) 有除x = ±1以外的解,则n一定不是素数。
Miller-Rabin测试:要测试N是否为素数,首先将N - 1分解为2^s * d (d为奇数) 。在每次测试开始时,先随机选一个介于[1, N - 1]的整数a, 如果对所有的r属于[0, s - 1]都满足a^d mod N != 1 且 a^(2^r*d) mod N != -1,则N是合数。否则,N有3/4的几率为素数。为了提高测试的正确性,可以选择不同的a进行多次测试。当n为32位无符号整数时,a尝试2, 7, 61就足够了。
#include<bits/stdc++.h>
using namespace std;
int pow_mod(int a, int d, int n)//快速幂求解a^d
{
long long sum = 1, x = d;
while(d)
{
if(d&1) sum = (sum * x) % n;
x = (x * x) % n;
d = d >> 1;
}
return sum;
}
int test(int n, int a, int d)//测试n是否为素数
{
if(n == 2 || n == a) return 1;//素数
if((n&1) == 0) return 0;//偶数
while(!(d&1)) d = d>>1;//把n-1 变为 2^s*d
int t = pow_mod(a, d, n);//t = a^d;
//循环s次,(d!=n-1)用来控制s次。因为二次同余方程和费马小定理,所以t==1的话,n为合数。
while((d!=n-1) && (t!=1) && (t!=n-1)){
t = (long long)t*t % n;
d = d<<1;
}
return (t==n-1 || (d&1)==1);
}
int isPrime(int n)
{
if(n < 2) return 0;
int a[5] = {2, 3, 61};//a尝试的数
for(int i = 0; i <= 2; i++) if(!test(n, a[i], n-1)) return 0;
return 1;//a尝试的数都满足,则n是素数
}
int main()
{
int n, num;
while(~scanf("%d", &n))
{
int ans = 0;
while(n--)
{
scanf("%d", &num);
if(isPrime(num)) ans++;
}
printf("%d\n", ans);
}
return 0;
}