GCD问题
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
给出区间 [a,b] , [c,d]求有多少对数满足gcd(x,y) = k,a <=x <= b,c <= y <= d 。
输入
输入一个T(1 <= T <= 100).
接下来的T行,每行五个整数a,b,c,d,k(1 <= a <= b <= 50000,1 <= c <= d <=50000,1 <= k <= 50000)。
输出
输出T行,每行一个整数代表对应输入的答案。
示例输入
2384 31270 278 37299 70336 35722 493 16985 158
示例输出
14164714170
提示
来源
示例程序
#include <cstdio> //莫比乌斯反演
#include <cmath>
#include <cctype>
#include <vector>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN =100000;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
{
memset(check,false,sizeof(check));
mu[1]=1;
int tot=0;
for(int i=2;i<=MAXN;i++)
{
if(!check[i])
{
prime[tot++]=i;
mu[i]=-1;
}
for(int j=0;j<tot;j++)
{
if(i*prime[j]>MAXN)break;
check[i*prime[j]]=true;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
else
{
mu[i*prime[j]]=-mu[i];
}
}
}
}
int sum[MAXN+10];
//找到[1,n][1,m]内互质的数的对数
long long solve(int n,int m)
{
long long ans=0;
if(n>m)
{
swap(n,m);
}
for(int i=1,la=0;i<=n;i=la+1)
{
la=min(n/(n/i),m/(m/i));
ans+=(long long)(sum[la]-sum[i-1])*(n/i)*(m/i);
}
return ans;
}
int main()
{
Moblus();
sum[0]=0;
for(int i=1;i<=MAXN;i++)
{
sum[i]=sum[i-1]+mu[i];
}
int a,b,c,d,k;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
long long ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve(b/k,(c-1)/k)+solve((a-1)/k,(c-1)/k);
printf("%lld\n",ans);
}
return 0;
}