- 博客(196)
- 收藏
- 关注
原创 深度生成模型 - 评估生成模型篇
深度生成模型作为人工智能领域的重要分支,其核心在于通过学习数据的潜在分布来生成新的、逼真的样本。然而,如何准确、全面地评估这些生成模型的表现,一直是研究者和开发者关注的焦点。评估生成模型不仅关乎模型性能的量化,更是模型优化、改进和创新的基础。本文将简要探讨深度生成模型的评估方法,旨在为读者提供一个全面的视角,理解当前评估生成模型的主要手段及其局限性。
2024-12-11 06:30:00
1650
原创 深度生成模型 - 其他生成方案篇
深度生成模型是深度学习中一类重要的模型,它们通过捕捉数据的潜在分布来生成新的样本。尽管生成对抗网络(GANs)和变分自编码器(VAEs)等主流方法已经在图像生成、文本创作等领域取得了显著的成功,但深度生成模型的探索并未止步。本文将简要介绍深度生成模型的其他生成方案,这些方案在原理和应用上都有其独特之处,为深度生成模型的进一步发展提供了更多的可能性。
2024-12-09 06:30:00
849
原创 深度生成模型 - 生成随机网络(GSN)篇
在当今复杂多变的信息化社会中,网络已成为连接各个领域与个体的桥梁。无论是社交网络、通信网络还是神经网络,都展现出复杂而迷人的结构特性。生成随机网络作为探索这些复杂系统的一种重要手段,近年来受到了广泛的关注与研究。随机网络不仅能够模拟真实世界中的许多复杂现象,还能为我们提供理解这些现象的新视角和方法。
2024-12-07 06:30:00
979
原创 深度生成模型 - 从自编码器采样篇
自编码器(Autoencoder)是深度学习中一种独特的无监督学习技术,它通过构建输入数据的压缩表示(编码)及其重构(解码)过程,实现了数据的有效降维和深层次特征提取。自编码器的核心思想在于,利用神经网络学习一个从输入到隐层(编码)再到输出(解码)的非线性映射,使得输出能够尽可能复现原始输入。这一过程中,隐层编码作为输入数据的低维表示,蕴含了数据的核心信息,有助于去除数据中的冗余和噪声,为后续的数据分析、模式识别等任务提供了更为精炼和有效的特征集。
2024-12-06 06:30:00
638
原创 深度生成模型 - 有向生成网络(DGN)篇
有向生成网络是深度学习和机器学习领域中一类重要的模型,它们通过特定的结构和学习算法,能够生成新的数据样本或逼近真实数据的分布。这类网络的核心思想是利用有向图模型来表示数据生成的过程,并通过训练来优化网络的参数,使其能够生成高质量的数据。
2024-12-02 06:30:00
856
原创 深度生成模型 - 通过随机操作的反向传播篇
反向传播(Back Propagation)是训练人工神经网络的一种核心方法,它结合了最优化方法(如梯度下降法)来更新网络中的权重,从而最小化损失函数。在神经网络的前向传播过程中,输入数据通过层级结构和参数逐步转换为预测结果。然而,如何高效地调整这些参数以优化网络性能,是神经网络训练中的一大挑战。反向传播算法正是为了解决这一问题而诞生的,它利用微积分中的链式法则,通过从输出层向输入层逐层计算误差梯度,求解神经网络参数的偏导数,进而实现网络参数的优化。
2024-11-26 06:30:00
804
原创 深度生成模型 - 其他玻尔兹曼机篇
玻尔兹曼机(Boltzmann Machine,BM)作为一类基于能量的生成模型,在随机神经网络的范畴内占有重要地位。它最早由Geoffrey Hinton和Terry Sejnowski于1985年提出,其设计理念源于物理学中的玻尔兹曼分布,特别是热力学中的模拟退火和自旋玻璃理论。BM通过模拟神经元之间的随机交互来调整状态,以寻找系统的低能量状态,旨在学习数据的概率分布,进而生成新的样本。
2024-11-21 06:30:00
672
原创 深度生成模型 - 用于结构化或序列输出的玻尔兹曼机篇
玻尔兹曼机,作为一种基于能量的随机神经网络模型,在机器学习和统计学领域一直备受关注。然而,传统的玻尔兹曼机在处理结构化或序列数据时存在一定的局限性。为了克服这一挑战,研究者们开始探索用于结构化或序列输出的玻尔兹曼机。
2024-11-20 06:15:00
940
原创 深度生成模型 - 卷积玻尔兹曼机篇
卷积玻尔兹曼机(Convolutional Boltzmann Machines,简称CBMs)是玻尔兹曼机在卷积神经网络框架下的扩展,旨在结合玻尔兹曼机的概率建模能力和卷积神经网络的局部连接、权值共享特性。传统的玻尔兹曼机在处理图像等高维数据时,由于节点之间全连接的结构,导致计算复杂度和内存消耗极高。而卷积玻尔兹曼机通过引入卷积层和池化层,有效地降低了模型的复杂度,同时保留了图像的空间结构信息。这种结构使得卷积玻尔兹曼机在图像建模、图像分割等领域具有显著的优势。
2024-11-19 06:30:00
1035
原创 深度生成模型 - 实值数据上的玻尔兹曼机篇
玻尔兹曼机作为一种基于能量的模型,在机器学习领域有着广泛的应用。然而,传统的玻尔兹曼机主要是为二值数据开发的,这限制了其在处理如图像和音频等实值数据时的能力。随着技术的发展和需求的增加,研究者们开始探索如何在实值数据上应用玻尔兹曼机,从而催生了实值数据上的玻尔兹曼机这一研究领域。
2024-11-18 06:30:00
627
原创 深度生成模型 - 深度玻尔兹曼机(DBM)篇
深度玻尔兹曼机(Deep Boltzmann Machine, DBM)作为深度学习领域的一个重要模型,近年来受到了广泛的关注和研究。DBM是玻尔兹曼机(Boltzmann Machine)的一种扩展,它继承了玻尔兹曼机基于能量的模型结构和无监督学习的特性,并通过增加隐藏层的数量实现了更深的网络结构。这种模型不仅可以用于无监督学习,还可以解决有监督学习问题,为各种复杂的任务提供了强大的表示能力和学习能力。
2024-11-14 06:30:00
1084
原创 通用项目工程的过程视图概览
项目视图采用过程方法实现项目工程过程视图,目的在于演示如何在项目中通过组合标准的过程、活动和任务,对选定特别关注的产品特性的实现过程进行集中展示。
2024-11-13 06:15:00
973
原创 深度生成模型 - 深度信念网络(DBN)篇
深度信念网络(Deep Belief Networks,DBN)作为深度学习领域的一个重要里程碑,自2006年由Geoffrey Hinton及其研究小组提出以来,一直受到广泛的关注和研究。DBN由多层受限玻尔兹曼机(Restricted Boltzmann Machines,RBMs)堆叠而成,旨在通过无监督学习有效地训练多层神经网络。这种网络结构通过逐层训练RBMs来学习数据的层次结构表示,每一层都学习数据中的高级抽象特征。
2024-10-30 06:30:00
2108
原创 深度生成模型 - 受限玻尔兹曼机(RBM)篇
受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)是深度学习领域中的一种重要模型,其起源于统计物理学,由保罗·斯模棱斯基最初提出并命名为簧风琴(Harmonium)。随后,在杰弗里·辛顿及其合作者的推动下,受限玻尔兹曼机因其独特的结构和高效的训练算法而逐渐受到广泛关注。
2024-10-29 06:30:00
1577
原创 深度生成模型 - 玻尔兹曼机(BM)篇
玻尔兹曼机(Boltzmann Machine, BM)作为计算机科学技术领域的一个重要概念,自2018年被全国科学技术名词审定委员会公布以来,便因其独特的网络结构和训练方式而受到广泛关注。作为一种由二值随机神经元构成的两层对称连接神经网络,玻尔兹曼机不仅借鉴了模拟退火的思想,还在学习(训练)阶段和运行(预测)阶段展现了与其他神经网络截然不同的特性。
2024-10-28 06:30:00
1188
1
原创 深度生成模型 - 引言篇
在人工智能的广阔领域中,深度生成模型作为一类强大的工具,正逐步引领着机器学习技术的新一轮变革。这些模型不仅能够从复杂的数据分布中学习到潜在的表示,还能够生成与训练数据相似甚至创新的新样本。深度生成模型的发展,不仅拓宽了我们对数据内在规律的理解,更为诸多实际应用场景提供了前所未有的解决方案。
2024-10-27 06:30:00
433
原创 近似推断 - 学习的近似推理篇
在人工智能与机器学习的浪潮中,学习的近似推理(Approximate Inference for Learning)正逐渐成为推动技术进步的关键力量。面对日益复杂的数据模型和庞大的数据集,传统的精确推理方法往往难以在有限的时间和资源内给出满意的答案。因此,近似推理作为一种折衷而高效的解决方案,应运而生并逐渐受到广泛关注。
2024-10-26 06:30:00
1464
原创 近似推断 - 变分推断和学习篇
在数据科学和机器学习的广阔领域中,变分推断(Variational Inference, VI)作为一种强大的近似推断方法,正逐渐崭露头角。随着大数据时代的到来,我们面临的数据集越来越庞大且复杂,传统的精确推断方法往往计算成本高昂,甚至在某些情况下变得不切实际。因此,变分推断以其高效、可扩展的特性,成为了处理大规模数据和复杂模型的首选方法。
2024-10-25 06:30:00
1321
原创 近似推断 - 最大后验推断和稀疏编码篇
在深度学习的广阔领域中,近似推断扮演着至关重要的角色。当面对复杂的概率模型时,精确推断往往难以实施,因此我们需要借助近似推断来寻找解决方案。其中,最大后验推断(MAP)和稀疏编码是两种极具代表性的方法。
2024-10-24 06:30:00
919
原创 近似推断 - 期望最大化(EM)篇
近似推断是统计学和机器学习中一个至关重要的领域,尤其在处理复杂模型和不完全数据时显得尤为重要。期望最大化(Expectation Maximization,简称EM)算法是近似推断中的一种重要方法,它专门用于解决含有隐变量的参数估计问题。在实际应用中,我们常常面临数据不完整或属性缺失的情况,这时传统的参数估计方法便显得力不从心。而EM算法通过迭代的方式,巧妙地利用现有数据对隐变量进行估计,并据此优化模型参数,从而为我们提供了一种有效的解决方案。
2024-10-23 06:30:00
705
原创 近似推断 - 推断是一个优化问题篇
在数据分析与机器学习的广阔领域中,近似推断占据着举足轻重的地位。当我们面对复杂的数据模型和庞大的数据集时,直接进行精确推断往往计算成本高昂,甚至在某些情况下变得不切实际。因此,近似推断作为一种折衷方案应运而生,旨在以相对较低的计算代价获得接近精确的推断结果。而推断问题,本质上可以视为一个优化问题,其核心在于如何在给定的约束条件下,找到最优的近似解。
2024-10-22 06:30:00
1538
原创 近似推断 - 引言篇
在人工智能的浩瀚领域中,深度学习如同一颗璀璨的明星,引领着技术的前沿。作为其核心组成部分,近似推断在深度学习的模型训练与预测中扮演着至关重要的角色。近似推断,简而言之,是在面对复杂、高维的概率模型时,寻找一种高效、近似的计算方法来替代精确但计算成本高昂的推断过程。随着大数据时代的到来和计算能力的飞跃,深度学习模型变得越来越复杂,传统的精确推断方法往往难以应对这种复杂性,因此,近似推断技术应运而生,并逐渐发展成为深度学习领域不可或缺的一部分。
2024-10-21 06:15:00
1440
原创 面对配分函数 - 估计配分函数篇
配分函数,作为统计物理和热力学中的核心概念,扮演着举足轻重的角色。它不仅是系统微观状态与宏观性质之间的桥梁,更是我们理解和预测物质宏观行为的关键工具。配分函数包含了系统所有可能微观状态的统计信息,通过对其进行分析和计算,我们可以得出系统的能量、熵、自由能等重要热力学量,进而揭示系统的相变、稳定性等宏观特性。然而,配分函数的精确计算往往是一项艰巨的任务,特别是对于复杂系统而言。因此,估计配分函数成为了研究者们关注的焦点。
2024-10-20 06:30:00
1618
原创 面对配分函数 - 噪扰对比估计(NCE)篇
配分函数(也叫归一化因子)在概率分布和统计模型的计算中扮演着至关重要的角色。然而,在许多实际应用中,特别是自然语言处理和图像处理领域,配分函数的计算往往异常复杂且难以直接实现。为了解决这一难题,噪音对比估计(Noise Contrastive Estimation,NCE)应运而生。NCE是一种巧妙的统计模型估计方法,它能够在无法直接计算配分函数的情况下,估算出概率分布的参数。
2024-10-19 06:30:00
1999
原创 面对配分函数 - 去噪得分匹配篇
去噪得分匹配作为一种创新的深度学习技术,为我们提供了一种绕过复杂配分函数、有效估计数据分布的新途径。通过引入噪声并拟合其log梯度,去噪得分匹配不仅简化了计算过程,还提高了模型的泛化性能和样本生成质量。去噪得分匹配的成功应用,不仅展示了其在处理复杂数据分布方面的优势,也为未来的研究提供了新的思路和方向。例如,我们可以进一步探索不同类型的噪声对模型性能的影响,以及如何将去噪得分匹配与其他深度学习技术相结合,以构建更加高效和准确的模型。
2024-10-18 06:30:00
272
原创 面对配分函数 - 得分匹配与比率匹配篇
配分函数在统计物理学和机器学习中都扮演着至关重要的角色。在统计物理学中,配分函数描述了系统在热平衡状态下的概率分布,包含了系统的许多重要信息。而在机器学习中,尤其是深度学习领域,配分函数的概念同样重要,尽管其应用方式和物理领域有所不同。得分匹配(Score Matching, SM)和比率匹配(Ratio Matching, RM)是两种绕开直接估计配分函数或其导数的方法,它们在模型训练中具有独特的优势。
2024-10-17 06:30:00
1951
原创 面对配分函数 - 伪似然篇
配分函数在统计物理和概率论中扮演着至关重要的角色,它描述了系统在不同状态下的概率分布。然而,直接处理配分函数往往面临计算上的挑战。为了绕开这一难题,伪似然方法应运而生。伪似然是一种基于条件概率比率的统计推断方法,它能够在不直接计算配分函数的情况下,对参数进行有效的估计。这种方法特别适用于那些配分函数难以直接求解或计算成本高昂的模型,如某些复杂的无向概率模型。
2024-10-16 06:00:00
918
原创 面对配分函数 - 随机最大似然和对比散度篇
在统计学和机器学习的领域中,随机最大似然(Stochastic Maximum Likelihood)和对比散度(Contrastive Divergence)是两种重要的方法,它们在无向模型学习中扮演着关键角色。随机最大似然主要用于估计满足给定样本分布的参数,通过最大化似然函数来找到最可能的参数值。这一过程通常涉及正相和负相的平衡,其中正相基于真实数据的期望,而负相则基于模型分布的期望。然而,随机最大似然在某些情况下可能面临计算成本高和效率低的问题。
2024-10-15 06:15:00
964
原创 面对配分函数 - 对数似然梯度篇
在机器学习和统计学领域,对数似然梯度是一种至关重要的优化方法,特别是在处理复杂概率模型时。对数似然梯度方法的核心在于通过最大化对数似然函数来求解模型参数,这一方法广泛应用于各种参数估计问题中。对数似然梯度方法之所以受到青睐,是因为对数似然函数通常具有较为简单的形式,且其梯度易于计算,从而便于使用梯度上升算法进行求解。
2024-10-14 06:30:00
1690
原创 面对配分函数 - 引言篇
深度学习,作为人工智能领域的一个核心分支,近年来在图像识别、语音识别、自然语言处理等多个方面取得了显著进展。其核心思想是通过构建深层的神经网络模型,模拟人脑的学习机制,从而实现对复杂数据的自动特征提取和高效处理。然而,在深度学习的研究与实践中,配分函数(Partition Function)作为一个重要的数学概念,其地位与作用往往被忽视或低估。
2024-10-13 06:15:00
1489
原创 蒙特卡罗方法 - 不同的峰值之间的混合挑战篇
蒙特卡罗方法,也称为统计模拟法或统计试验法,是一种以概率统计理论为基础的数值模拟方法。自20世纪40年代中期提出以来,它因能灵活处理复杂计算问题而广泛应用于多个领域,如金融工程学、宏观经济学和计算物理学等。该方法的核心思想是通过构造概率模型或随机过程,并利用随机数进行模拟试验,以求解问题的统计特性或期望值。然而,在应用蒙特卡罗方法时,特别是在处理具有不同峰值的复杂问题时,常常面临混合挑战。
2024-10-12 06:30:00
1007
原创 蒙特卡罗方法 - Gibbs采样篇
蒙特卡罗方法是一种通过在一定范围内均匀随机抽样来得到某个结果的计算方法。其中,Gibbs采样作为蒙特卡罗方法中的一种重要技术,特别是在处理复杂多元概率分布采样时展现出独特的优势。Gibbs采样基于马尔可夫链蒙特卡罗(MCMC)理论,通过逐个更新参数的高斯分布采样,实现复杂数据分布的近似采样。在深度学习和统计学等领域,Gibbs采样被广泛应用于参数估计、模型选择和决策制定等问题,尤其是在神经网络训练和隐变量模型的近似推断中,其效率和精度得到了广泛认可。
2024-10-11 06:30:00
937
原创 蒙特卡罗方法 - 马尔可夫链蒙特卡罗方法篇
蒙特卡罗方法,作为数值计算领域的一颗璀璨明珠,以其强大的随机模拟能力,在物理、金融、工程等多个学科中发挥着重要作用。然而,面对高维、复杂的概率分布,传统蒙特卡罗方法往往难以高效地进行抽样和积分计算。此时,马尔可夫链蒙特卡罗方法(Markov Chain Monte Carlo, MCMC)应运而生,它巧妙地将马尔可夫链的遍历性与蒙特卡罗方法的随机性相结合,为复杂概率分布的抽样和推断提供了全新的解决方案。MCMC方法通过构建一条马尔可夫链,使得链的平稳分布收敛于目标分布,从而实现对复杂概率分布的有效抽样。
2024-10-10 06:30:00
977
原创 蒙特卡罗方法 - 重要采样篇
蒙特卡罗方法,作为一种基于随机抽样的数值计算方法,在金融、物理、工程等多个领域展现出了强大的应用潜力。然而,传统蒙特卡罗方法在处理某些特定问题时,可能会遇到收敛速度慢、计算成本高等挑战。为了克服这些难题,重要采样(Importance Sampling)技术应运而生。重要采样是一种改进的蒙特卡罗方法,它通过改变抽样分布,使得样本更加集中于对目标函数贡献较大的区域,从而加速收敛,提高计算效率。这一技术的核心在于设计一个合适的采样分布,即重要性函数,使得样本能够更有效地反映目标问题的特性。
2024-10-09 06:00:00
855
原创 蒙特卡罗方法 - 采样和蒙特卡罗方法篇
在深度学习的探索中,结构化概率模型以其强大的表示能力和对复杂数据关系的建模能力,成为解决诸多难题的关键工具。然而,这些模型往往涉及高维的、非线性的概率分布,使得直接计算或优化变得异常困难。采样技术和蒙特卡罗方法因此应运而生,成为处理这类问题的有效手段。采样技术允许我们从复杂的概率分布中抽取样本,而蒙特卡罗方法则利用这些样本来近似求解目标问题的解,如期望值、积分等。这两种技术的结合,为深度学习中的结构化概率模型提供了强大的计算支撑,使得模型的学习、推断和优化过程变得更加高效和可行。
2024-10-08 06:30:00
1113
原创 蒙特卡罗方法 -引言篇
在深度学习的广阔领域中,结构化概率模型作为一种高效表示和推断复杂数据关系的工具,扮演着至关重要的角色。蒙特卡罗方法(Monte Carlo Method,MC),作为这些模型中的重要技术之一,以其独特的随机抽样和统计试验特性,为解决高维、非线性及难以直接解析计算的问题提供了强有力的支持。该方法不仅适用于求解积分、期望等数学运算,还广泛应用于强化学习、统计物理、金融工程等多个领域,是深度学习研究和应用中不可或缺的一部分。
2024-10-07 09:16:40
698
原创 深度学习中的结构化概率模型 - 结构化概率模型的深度学习方法篇
在深度学习的广阔领域中,结构化概率模型(Structured Probabilistic Model)扮演着至关重要的角色。这类模型利用图论中的图结构来表示概率分布中随机变量之间的复杂关系,为处理高维、结构丰富的数据(如图像、语音、文本等)提供了强有力的工具。结构化概率模型不仅降低了表示概率分布所需的参数数量,还显著提升了模型的学习与推断效率,成为深度学习研究中的关键组成部分。
2024-10-06 06:02:33
1303
原创 深度学习中的结构化概率模型 - 推断和近似推断篇
在深度学习的广阔领域中,结构化概率模型占据了举足轻重的地位。这类模型不仅捕捉了数据间的复杂关联与依赖性,还通过概率图的形式直观地表达了这些关系,为处理复杂数据提供了强大的框架。推断,作为结构化概率模型中的核心任务之一,旨在基于给定的观测数据,计算模型中未观测变量的后验概率分布或某些特定查询的概率值。然而,由于实际问题的复杂性,精确的推断往往计算量巨大甚至不可行,这就催生了对近似推断方法的研究与应用。
2024-10-05 00:01:04
867
原创 深度学习中的结构化概率模型 - 从图模型中采样篇
图模型,如贝叶斯网络、马尔可夫随机场等,通过节点表示变量,边表示变量间的依赖关系,构建了一个直观且强大的框架来描述复杂数据的统计特性。从图模型中采样,意味着我们能够基于这个框架生成符合其定义的概率分布的随机样本,这些样本在训练数据不足或需要进行创造性扩展时尤为宝贵。
2024-10-04 00:22:32
855
原创 深度学习中的结构化概率模型 - 使用图来描述模型结构篇
在深度学习的探索之路上,结构化概率模型以其独特的视角和强大的表达能力,成为了研究复杂数据关系的重要工具。这一模型的核心在于其巧妙地利用图来描述模型结构,将随机变量间的复杂交互关系可视化、结构化。图的引入,不仅为我们提供了一个直观理解数据内部结构的工具,更使得模型的学习与推理过程变得更加高效和精准。通过图,我们可以清晰地看到变量之间的依赖关系、信息传递路径以及潜在的因果结构,这为构建更加复杂、精确的深度学习模型提供了坚实的基础。
2024-10-03 00:10:59
1619
【软考中高项】系统集成项目管理工程师与信息系统项目管理师中监控过程组涉及的相关文档
2024-12-24
【软考中高项】系统集成项目管理工程师与信息系统项目管理师中执行过程组涉及的相关文档
2024-12-05
【软考中高项】系统集成项目管理工程师与信息系统项目管理师中规划过程组涉及的相关文档
2024-11-19
【软考中高项】系统集成项目管理工程师与信息系统项目管理师中启动过程组涉及的相关文档
2024-11-15
系统集成项目管理工程第3版49个过程的定义、作用、输入、输出以及工具与技术汇总
2024-09-13
计算智能导论原版(第二版)
2024-07-09
Elasticsearch实战英文版第二版
2024-06-30
大数据之系统运维和管理功能要求
2024-06-28
大数据之系统框架功能基本要求
2024-06-27
大数据及其应用领域之术语和定义
2024-06-27
大数据之数据资源规划流程及其配置相关活动概览
2024-06-26
大数据参考架构详细描述
2024-06-25
机器学习中线性代数相关概念
2024-06-17
使用Python快速入门机器学习
2024-06-17
大数据之数据分类指南概览
2024-06-14
大数据之政务数据开放共享
2024-06-14
大数据之工业应用参考架构
2024-06-14
大数据之接口框架基本要求
2024-06-14
大数据之存储与处理系统功能要求
2024-06-14
大数据之分析系统框架各功能模块建设要求
2024-06-14
信息系统项目管理师第四版 内容结构知识点整理
2024-06-13
老生常谈的24种Java设计模式
2024-06-13
项目管理知识体系指南(PMBOK指南)结构及其内容
2024-06-13
TOGAF10标准英文版
2024-06-13
项目启动过程中所用工具汇总
2024-06-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人