人工智能“六步走”学习路线

本文详述了提升人工智能技能的六大关键步骤,涵盖数学基础、机器学习算法、编程工具掌握、行业动态跟进、实践操作与专业领域深耕,旨在助力读者成为AI领域的专家。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、学习并掌握一些数学知识

高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。

再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路有以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。

2、掌握经典机器学习理论和算法

       如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:

1)  回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);

2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);

3)  基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);

4)  决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);

5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;

7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);

8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;

9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);

10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);

11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS),  投影追踪(ProjectionPursuit)等;

12)集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)

3、掌握一种编程工具,比如Python

     一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。

4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。

5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。

6、选择自己感兴趣或者工作相关的一个领域深入下去

人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的专研下去,这样才能成为人工智能领域的大牛,有所成就。
————————————————
版权声明:本文为CSDN博主「isuccess88」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/isuccess88/article/details/54588131

<think>好的,用户之前问过关于选择中国大学APP上的数学课程,现在他提到要为AI领域学习做准备,打基础。我需要调整之前的建议,结合AI所需的基础知识来推荐课程。 首先,AI领域需要哪些数学基础呢?通常包括线性代数、概率统计、微积分,可能还有优化算法和离散数学。用户之前数学基础薄弱,所以需要从初中补起,但现在目标明确是AI,可能需要更直接的路径。 用户之前的情况是初中数学忘得差不多了,现在他可能已经意识到需要补数学,但直接跳到大学数学可能太难。所以应该推荐先巩固高中数学,尤其是代数、函数、概率部分,然后再逐步引入大学数学的基础课程。 中国大学APP上的课程可能需要调整,之前推荐的初中复习课程可能不够,需要找一些高中到大学过渡的课程,或者专门为工科准备的数学课程。例如线性代数和概率统计的入门课,可能适合用户当前的基础。 另外,用户可能没有太多时间,需要高效学习。应该推荐重点突出的课程,强调与AI相关的部分,比如矩阵运算、概率分布、导数等。同时,结合应用实例的课程可能更能保持兴趣,比如用Python实现数学概念,这样理论与实践结合。 还要考虑用户的学习方式,可能需要一些互动性强的资源,比如可汗学院或者洋葱学院的视频,帮助理解基础概念。此外,工具如GeoGebra可视化数学概念,或者用Python库进行实际演练,可能对用户有帮助。 需要注意避开过于理论或证明密集的课程,用户的目标是应用,所以重点放在理解和应用上,而不是严格的数学证明。推荐课程时要注意标注是否需要高中或大学基础,避免用户选择超出当前水平的课程。 最后,可能需要分阶段规划,先补高中数学关键部分,然后进入大学数学基础,同时结合编程学习,这样逐步为AI学习打下坚实基础。还要提醒用户坚持,并定期评估进展,调整学习计划。</think>--- ### **针对AI领域学习的数学基础规划** AI领域的核心数学需求为:**线性代数 + 概率统计 + 微积分 + 优化基础**。根据你的初中基础现状,建议分三步走: **初中补漏 → 高中核心衔接 → 大学数学工具化学习** --- ### **一、初中数学重点补漏清单** AI底层运算依赖代数能力,需优先掌握以下初中内容: | 模块 | 关键知识点 | 学习建议 | |------|------------|----------| | **代数** | 一次/二次函数、方程组求解 | 用GeoGebra动态演示函数图像 | | **基础统计** | 平均数/方差/概率计算 | 结合Excel实操(如模拟掷骰子概率) | | **几何** | 坐标系、向量基础(仅需理解方向/长度概念) | 通过游戏理解(如《纪念碑谷》中的空间变换) | **推荐课程**: - **《初中数学函数与统计精讲》**(北京四中网校) - 特点:**直击AI相关知识点**,跳过几何证明等非必要内容 - 链接:[中国大学MOOC搜索页](https://www.icourse163.org/) --- ### **二、高中到大学的衔接学习** #### **1. 核心模块优先级** ```mermaid pie title AI所需高中数学占比 "函数与导数(微积分基础)" : 35 "概率与统计" : 30 "矩阵与向量(线性代数启蒙)" : 25 "其他(如数列)" : 10 ``` #### **2. 慕课课程推荐** | 课程名称 | 院校 | 特点 | |---------|------|------| | **《人工智能中的高中数学》**(浙江大学) | 用Python代码实现概率模型/矩阵运算 | 每章含AI应用案例(如用最小二乘法预测房价) | | **《数据科学数学基础》**(华东师范大学) | 专为文科生/数学薄弱者设计,用生活案例讲导数/梯度 | --- ### **三、大学数学工具化学习方案** #### **1. 分领域攻克策略** | 数学领域 | AI典型应用 | 学习资源 | |---------|------------|----------| | **线性代数** | 神经网络权重矩阵 | 《沉浸式线性代数》(在线书) + 3Blue1Brown视频(中文字幕) | | **概率统计** | 贝叶斯分类器 | 可汗学院《概率与统计》+ 《Think Stats》电子书 | | **微积分** | 梯度下降优化 | 《微积本质》动画课(MIT) + PyTorch自动求导实操 | #### **2. 中国大学APP精选课程** | 课程名称 | 院校 | 适配基础 | |---------|------|---------| | **《工科数学分析》**(哈尔滨工业大学) | 弱化证明,强调计算与应用 | 需高中函数基础 | | **《机器学习数学基础》**(深圳大学) | 直接用Numpy实现数学概念 | 需掌握初中代数 | --- ### **四、关键学习技巧** 1. **用代码学数学**: - 遇到公式时,用Python代码实现(如用SymPy库解方程) - 案例:`np.linalg.inv()` 理解矩阵逆的实用意义 2. **AI驱动学习法**: - 每学完一个知识点,在Kaggle找相关数据集实践(如用线性回归预测数据) 3. **避坑指南**: - ✖ 不要先学《高等数学》(理论过深) - ✔ 优先学《线性代数及其应用》(Gilbert Strang)前4章 --- ### **五、替代资源包** | 类型 | 推荐 | 使用场景 | |------|------|----------| | **视频** | 3Blue1Brown《线性代数的本质》 | 建立几何直觉 | | **工具** | Wolfram Alpha | 随时解方程/画图 | | **社区** | StackExchange数学版 | 提问时用"AI application"标注优先获答 | --- **执行路线图**: ```mermaid gantt title AI数学基础6个月计划 dateFormat YYYY-MM-DD section 初中补漏 函数与统计 :active, 2023-10-01, 30d section 高中衔接 矩阵与概率 :2023-11-01, 45d section 大学工具 线性代数核心 :2024-01-01, 60d 微积分应用 :2024-03-01, 45d ``` **起步建议**: 从**浙江大学《人工智能中的高中数学》**开始,同步用Wolfram Alpha验证计算过程,每天2小时,坚持1个月后可尝试用Python实现简单线性回归模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值