分布式平均跟踪在多智能体系统中的应用
1. 引言
多智能体系统(Multi-Agent Systems, MAS)是一种由多个智能体组成的系统,这些智能体通过局部交互共同工作以实现全局任务或目标。在多智能体系统中,分布式平均跟踪(Distributed Average Tracking, DAT)是一个重要的研究领域,它旨在设计算法,使得所有智能体能够基于自身及其邻居的信息跟踪参考信号的平均值。这一问题不仅具有理论意义,还在实际应用中有着广泛的应用前景,如多机器人系统、多核微芯片和分布式优化等领域。
2. 概述
多智能体系统的一个显著特点是,每个智能体只能获取局部信息,通过与邻居的交互来实现全局目标。分布式平均跟踪的目标是,给定一组智能体,每个智能体都有一个参考信号,设计一个算法,使得所有智能体最终能够跟踪这些参考信号的平均值。与传统的集中式解决方案相比,分布式平均跟踪算法仅依赖于局部信息,因此更加高效且易于扩展。
2.1 多智能体系统的特点
多智能体系统具有以下特点:
- 全局任务/目标 :所有智能体协同工作以实现某个全局目标。
- 局部交互 :智能体之间通过局部通信和感知进行交互。
- 鲁棒性 :系统能够容忍部分智能体失效或通信中断。
- 可扩展性 :随着智能体数量的增加,系统性能不会显著下降。
3. 什么是分布式平均跟踪
分布式平均