P1003 [NOIP2011 提高组] 铺地毯

本文介绍了一个NOIP2011提高组Day1的第1题,题目要求找出覆盖特定点的最顶层地毯编号。通过使用结构体存储地毯信息并遍历检查每个地毯,最终确定覆盖该点的地毯编号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nn 张地毯,编号从 11 到 nn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。

地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。

输入格式

输入共 n + 2n+2 行。

第一行,一个整数 nn,表示总共有 nn 张地毯。

接下来的 nn 行中,第 i+1i+1 行表示编号 ii 的地毯的信息,包含四个整数 a ,b ,g ,ka,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标 (a, b)(a,b) 以及地毯在 xx 轴和 yy 轴方向的长度。

第 n + 2n+2 行包含两个整数 xx 和 yy,表示所求的地面的点的坐标 (x, y)(x,y)。

输出格式

输出共 11 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1

输入输出样例

输入 #1    输出 #1
3          3         
1 0 2 3
0 2 3 3
2 1 3 3
2 2

输入 #2    输出 #2
3         -1
1 0 2 3
0 2 3 3
2 1 3 3
4 5

【样例解释 1】

如下图,11 号地毯用实线表示,22 号地毯用虚线表示,33 号用双实线表示,覆盖点 (2,2)(2,2) 的最上面一张地毯是 33 号地毯。

【数据范围】

对于 30\%30% 的数据,有 n \le 2n≤2。
对于 50\%50% 的数据,0 \le a, b, g, k \le 1000≤a,b,g,k≤100。
对于 100\%100% 的数据,有 0 \le n \le 10^40≤n≤104, 0 \le a, b, g, k \le {10}^50≤a,b,g,k≤105。

noip2011 提高组 day1 第 11 题。

 

我是用了结构体来做,不得不说真好用啊,就是输入麻烦了一点。 因为我们只需要输出一个数字,所以我选择用一个int型变量来显示这个结果(主要是方便),给它赋值-1,然后用地毯去循环覆盖它,这样保证它最后的值是覆盖在它最上面的地毯。 接下来上代码——

#include<bits/stdc++.h>
using namespace std;
struct dt{
	int a,b,x,y;
} d[10001];//
int main()
{
	int n,xn,yn,di=-1;//(xn,yn)
	cin>>n;
	for(int i=1;i<=n;i++)//
		cin>>d[i].a>>d[i].b>>d[i].x>>d[i].y;
	cin>>xn>>yn;
	for(int i=1;i<=n;i++)//
		if(xn>=d[i].a&&xn<=d[i].a+d[i].x&&yn>=d[i].b&&yn<=d[i].b+d[i].y)
        
        //d[i].b~d[i].b+d[i].y
		di=i;
        //
	cout<<di;
}

### NOIP 2011 提高 P1003 铺地毯 Python 解法 此问题的核心在于模拟铺设地毯的过程并查询某一点是否被覆盖以及由哪张地毯覆盖。以下是详细的解决方案: #### 问题分析 给定 n 张地毯,每张地毯可以用四个整数描述其左下角和右上角的位置 `(a, b)` 和 `(g, h)`。按照输入顺序依次铺设地毯,后铺设的地毯会覆盖先铺设的部分。最后询问某个点 `(x, y)` 是否被覆盖,如果被覆盖,则返回最上面那张地毯的编号;如果没有被覆盖,则输出 `-1`。 #### 数据结构设计 可以采用简单的遍历方法来解决问题。对于每次查询操作,从最后一张地毯向前查找,找到第一个覆盖该点的地毯即可[^4]。 #### 实现细节 以下是一个完整的实现方案,包括读取数据、处理逻辑和输出结果。 ```python def main(): import sys # 输入部分 data = sys.stdin.read().splitlines() n = int(data[0]) # 地毯数量 carpets = [] # 存储地毯信息 (a, b, g, h, index) for i in range(n): a, b, g, h = map(int, data[i + 1].split()) carpets.append((a, b, g, h, i + 1)) m = int(data[n + 1]) # 查询次数 queries = [] for j in range(m): x, y = map(int, data[n + 2 + j].split()) queries.append((x, y)) results = [] # 处理查询 for query_x, query_y in queries: result = -1 for carpet in reversed(carpets): # 倒序查找 a, b, g, h, idx = carpet if a <= query_x <= g and b <= query_y <= h: # 判断是否在范围内 result = idx break results.append(result) # 输出结果 print("\n".join(map(str, results))) if __name__ == "__main__": main() ``` #### 关键点解释 1. **倒序查找**: 因为后铺设的地毯会覆盖之前的地毯,所以需要从最后一张地毯开始往前查找,确保找到的是最上方的地毯。 2. **边界条件**: 对于每个查询点 `(x, y)`,判断它是否落在当前地毯的范围 `[a, g] × [b, h]` 中。 3. **时间复杂度**: 每次查询的时间复杂度为 O(n),总复杂度为 O(m * n)。 #### 测试样例 假设输入如下: ``` 3 0 0 2 2 1 0 2 3 0 2 3 3 2 2 2 0 0 ``` 程序运行后的输出应为: ``` 3 1 ``` 这表明第二个查询点 `(0, 0)` 被第一张地毯覆盖,而第一个查询点 `(2, 2)` 被第三张地毯覆盖。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值