深度学习——张量

本文介绍了张量的概念及其在不同维度下的表示方法,并详细解释了如何使用TensorFlow创建各种类型的张量,包括通过不同方式生成特定数值或随机分布的张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.张量

张量:是指多维数组(列表)。

阶:张量的维数

维数名字例子
0-D0标量scalars = 1 2 3
1-D1向量vectorv = [1,2,3]
2-D2矩阵matrixm = [[1,2,3],[4,5,6],[7,8,9]]
n-Dntensort = [[[[...

2.数据类型

  • tf.int,tf.float……——tf.int32,tf.float32,tf.float64
  • tf.bool,——tf.constant([True,False])
  • tf.string,——tf.constant("Hellow,world")

3.创建一个张量

1.利用constant创建一个张量

tf.constant(张量内容,dtype = 数据类型(可选))

 运行结果shape括号内都好隔开几个数字就是几维张量,上图隔开一个数字就是一维的。2表示张量内有两个元素。

 2.将numpy的数据类型转换为Tensor数据类型

 tf.convert_to_tensor(数据名,dtype=数据类型(可选))

3.生成某种分布的张量

  • 生成正态分布的随机数,默认均值为0,标准差为1。tf.random.normal(维度,mean=均值,stddev=标准差)
  • 生成截断式正态分布的随机数。(维度,mean=均值,stddev=标准差):可以随机生成比较集中点的随机数,可以生成的数据在(均值+-2倍标准差之内)

  •  生成均匀分布随机数[minval,maxval]:tf.random.uniform(维度,minval=最小值,maxval=最大值)

4.补充 

  •  创建全为0的张量:tf.zeros(维度)
  • 创建全为1的张量:tf.ones(维度)
  • 创建全为指定值的张量:tf.fill(维度,指定值)

注:

对于维度:一维直接写个数;二维用[行,列];多维用[n,m,j,k……]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI炮灰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值