1.张量
张量:是指多维数组(列表)。
阶:张量的维数
维数 | 阶 | 名字 | 例子 |
0-D | 0 | 标量scalar | s = 1 2 3 |
1-D | 1 | 向量vector | v = [1,2,3] |
2-D | 2 | 矩阵matrix | m = [[1,2,3],[4,5,6],[7,8,9]] |
n-D | n | tensor | t = [[[[... |
2.数据类型
- tf.int,tf.float……——tf.int32,tf.float32,tf.float64
- tf.bool,——tf.constant([True,False])
- tf.string,——tf.constant("Hellow,world")
3.创建一个张量
1.利用constant创建一个张量
tf.constant(张量内容,dtype = 数据类型(可选))
运行结果shape括号内都好隔开几个数字就是几维张量,上图隔开一个数字就是一维的。2表示张量内有两个元素。
2.将numpy的数据类型转换为Tensor数据类型
tf.convert_to_tensor(数据名,dtype=数据类型(可选))
3.生成某种分布的张量
- 生成正态分布的随机数,默认均值为0,标准差为1。tf.random.normal(维度,mean=均值,stddev=标准差)
- 生成截断式正态分布的随机数。(维度,mean=均值,stddev=标准差):可以随机生成比较集中点的随机数,可以生成的数据在(均值+-2倍标准差之内)
- 生成均匀分布随机数[minval,maxval]:tf.random.uniform(维度,minval=最小值,maxval=最大值)
4.补充
- 创建全为0的张量:tf.zeros(维度)
- 创建全为1的张量:tf.ones(维度)
- 创建全为指定值的张量:tf.fill(维度,指定值)
注:
对于维度:一维直接写个数;二维用[行,列];多维用[n,m,j,k……]