安装ubantu1804 caffe踩雷

本文分享了作者在安装和配置Caffe深度学习框架过程中的经验教训,包括解决CUDA和cuDNN安装问题,修正环境变量,处理log解析错误,以及绘制网络结构图时遇到的挑战。通过详细步骤和解决方案,帮助读者避免常见陷阱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装caffe踩雷经历

1 编译make all 时出现,cuda.h 找不到,因为cuda没安装,或安装不正确

安装cuda时,cuda_10.0.130_410.48_linux.run,driver一向选择no,否则安装不成功

安装cudnn时,是把cudnn-10.0-linux-x64-v7.4.2.24.tgz解压缩,按照https://www.cnblogs.com/pertor/p/8733010.html 文章参考

2 ./train_xxxxx.sh时,出现_ZN5caffexxxx错误是库路径不正确,将编译好的caffe/build/lib 输出到~/.bashrc中,

export LD_LIBRARY_PATH=/home/youname/caffe-master/build/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH

具体方法见网页

3  解析log时,log重定向出现makers错误,采用list进行包装,如下所示

list(markers.keys())[idx]

4 draw_net画出网络结构图时,安装graphviz,pydot,如文章https://www.jianshu.com/p/0abc1488e331,出现caffe._caffe错误时,原因在caffe-master目录下没有进行,make pycaffe操作,完成后出现 ZN5boost错误,

在make.config中注意

PYTHON_INCLUDE := /usr/include/python3.6 \
        /usr/lib/python3/dist-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
 PYTHON_LIBRARIES := boost_python3 python3.6m
 #PYTHON_INCLUDE := /usr/include/python3.6m \
#                /usr/lib/python3.6/dist-packages/numpy/core/include

boost库路径错误,重新make all

再make pycaffe,

再出现错误一般是pip3 install --upgrade scikit-image scikit-learn,将caffe组件升级即可按照https://www.jianshu.com/p/0abc1488e331画出网络结构

以上是我为期两周的踩雷经历,也是一天搞不定,放了几天,再次拿起来,重新一鼓作气搞定了!

That's all,Enjoy your caffe life! Goog Job!

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值