一、问题引入
一个旅游景点,如果被带火了的话,就被称为“网红点”。大家来网红点游玩,俗称“打卡”。在各个网红点打卡的快(省)乐(钱)方法称为“攻略”。你的任务就是从一大堆攻略中,找出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略。
输入格式:
首先第一行给出两个正整数:网红点的个数 N(1<N≤200)和网红点之间通路的条数 M。随后 M 行,每行给出有通路的两个网红点、以及这条路上的旅行花费(为正整数),格式为“网红点1 网红点2 费用”,其中网红点从 1 到 N 编号;同时也给出你家到某些网红点的花费,格式相同,其中你家的编号固定为 0。
再下一行给出一个正整数 K,是待检验的攻略的数量。随后 K 行,每行给出一条待检攻略,格式为:nV1V2⋯ Vn
其中 n(≤200) 是攻略中的网红点数,Vi是路径上的网红点编号。这里假设你从家里出发,从 V1开始打卡,最后从 Vn回家。
输出格式:
在第一行输出满足要求的攻略的个数。
在第二行中,首先输出那个能在每个网红点打卡仅一次、并且路上花费最少的攻略的序号(从 1 开始),然后输出这个攻略的总路费,其间以一个空格分隔。如果这样的攻略不唯一,则输出序号最小的那个。
题目保证至少存在一个有效攻略,并且总路费不超过 10^9 。
输入样例:
6 13
0 5 2
6 2 2
6 0 1
3 4 2
1 5 2
2 5 1
3 1 1
4 1 2
1 6 1
6 3 2
1 2 1
4 5 3
2 0 2
7
6 5 1 4 3 6 2
6 5 2 1 6 3 4
8 6 2 1 6 3 4 5 2
3 2 1 5
6 6 1 3 4 5 2
7 6 2 1 3 4 5 2
6 5 2 1 4 3 6
输出样例:
3
5 11
二、解题步骤
1.思维导图
2.解题步骤
- 输入处理阶段
◦ 读取网红点数量N和通路数量M
◦ 构建201×201的邻接矩阵(因为网红点编号1-200,加上家0)
◦ 读取所有通路信息并填充邻接矩阵 - 攻略验证阶段
◦ 读取待检验攻略数量K
◦ 对每个攻略进行验证:
a. 初始化当前所在位置为家(0),总费用为0
b. 使用数组标记已访问的网红点
c. 依次检查每个网红点:
■ 检查与上一个点是否连通
■ 检查是否重复访问
■ 累加路径费用
d. 最后检查是否能回家
e. 如果满足所有条件:
■ 统计有效攻略数量
■ 更新最小费用攻略 - 结果输出阶段
◦ 输出满足条件的攻略总数
◦ 输出最小费用的攻略序号和费用
三、代码实现
1.代码
def main():
import sys
input = sys.stdin.read().split()
ptr = 0
n, m = map(int, input[ptr:ptr+2])
ptr += 2
# Initialize adjacency matrix
a = [[0] * 201 for _ in range(201)]
for _ in range(m):
x, y, s = map(int, input[ptr:ptr+3])
ptr += 3
a[x][y] = s
a[y][x] = s
num = int(input[ptr])
ptr += 1
mincost = float('inf')
sn = 0
glnum = 0
for i in range(num):
p = int(input[ptr])
ptr += 1
cost = 0
cur = 0
arr = [0] * 201
flag = 0
k_list = []
for _ in range(p):
k = int(input[ptr])
ptr += 1
k_list.append(k)
for j in range(p):
k = k_list[j]
if a[cur][k] and not arr[k]:
cost += a[cur][k]
arr[k] = 1
cur = k
else:
flag = 1
cost += a[k][0]
if p == n and a[k][0] and not flag:
if cost < mincost:
mincost = cost
sn = i + 1
glnum += 1
print(glnum)
print(f"{sn} {mincost}")
if __name__ == "__main__":
main()
2.复杂度分析
时间复杂度:O(K*N)
◦ K是攻略数量,N是网红点数量
◦ 每个攻略最多验证N个点的连通性
空间复杂度:O(N^2)
◦ 邻接矩阵存储需要N^2空间(N≤200)
◦ 标记数组需要O(N)空间
四、个人总结
通过本次实验,我深入理解了图论算法在实际问题中的应用,特别是如何利用邻接矩阵高效存储和查询路径信息。实验要求从众多旅游攻略中筛选出最优路线,这让我掌握了如何将现实问题抽象为图论模型,并通过算法验证路径的有效性。
在实现过程中,我学会了合理设计数据结构,比如使用邻接矩阵存储路径费用,既节省了空间又提高了查询效率。同时,我也更加熟悉了输入数据的处理技巧,特别是面对复杂格式时如何高效解析。在验证攻略时,我通过标记数组来检查重复访问,确保每个网红点仅打卡一次,这让我对算法细节的把控更加严谨。
此外,我还学会了如何在多个可行解中快速找出最优解,通过维护最小费用和对应序号,确保结果正确且高效。这次实验不仅提升了我的编程能力,也让我认识到算法设计在实际应用中的重要性。总的来说,这次实验让我在图论算法、数据处理和问题解决能力上都有了显著提升。