计算app用户的留存率

本文介绍了如何利用MySQL存储过程计算APP用户的留存率。通过建立基础数据表记录每日用户活跃情况,并设计留存率计算表及存储过程,实现了按天计算不同操作系统用户的留存率。留存率计算考虑了用户注册后连续登录的天数,以此评估用户粘性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         现在各种app盛行,与此同时,运营app也变得非常重要,关注app用户的留存情况是运营中的重要的一项,那么如何计算app的用户留存率呢?在该功能实现过程中,我使用了mysql的存储过程,每天定时任务执行调用存储过程,以计算每天用户的留存情况:

1、要计算用户的留存率,首先要准备好基础数据表

             基础数据表,就是记录每一天用户的使用app的情况,只要用户在某一天使用了app,那么该用户就是这一天的留存用户,eg:2016-02-13 用户A注册使用app,2016-02-14用户又登录使用了app,那么用户A就是2-14的留存用户,基础数据表就是记录用户A在2-14使用了app,就记录一条数据,这里需要注意的是,用户A在2-14多次登录使用app,在基础表中,我们只记录一次,便于计算和查询。

我设计的基础表结构

CREATE TABLE `stat_remain_log_login` (
  `userId` varchar(32) DEFAULT NULL COMMENT '用户ID',
  `last_login_time` datetime DEFAULT NULL COMMENT '最后一次登录时间',
  `register_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '用户注册时间',
  `fromOsType` varchar(100) DEFAULT NULL COMMENT '手机操作系统'
) ENGINE=InnoDB DEFAULT CHARSET=utf8


实际上这张基础表,是通过查询app的操作日志表所得,最后一次登录时间可以理解为用户在一天中最早一次登录的时间,这样便于计算,因为一个用户一天的登录数据我们只记录一次,这样我们得到了基础数据表;

2、设计记录留存率的数据库表

CREATE TABLE `stat_remain` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键ID',
  `dru` int(11) NOT NULL COMMENT '每日新增注册用户',
  `fristDayRate` double(5,2) DEFAULT NULL COMMENT '1天后留存率',
  `secondDayRate` double(5,2) DEFAULT NULL COMMENT '2天后留存率',
  `thirdDayRate` double(5,2) DEFAULT NULL COMMENT '3天后留存率',
  `forthDayRate` double(5,2) DEFAULT NULL COMMENT '4天后留存率',
  `fifthDayRate` double(5,2) DEFAULT NULL COMMENT '5天后留存率',
  `sixthDayRate` double(5,2) DEFAULT NULL COMMENT '6天后留存率',
  `seventhDayRate` double(5,2) DEFAULT NULL COMMENT '7天后留存率',
  `fourteenthDayRate` double(5,2) DEFAULT NULL COMMENT '14天后留存率',
  `thirtiethDayRate` double(5,2) DEFAULT NULL COMMENT '30天后留存率',
  `stat_time` timestamp NOT NULL DEFAULT '2014-01-01 00:00:00',
  `add_time` timestamp NOT NULL DEFAULT '2014-01-01 00:00:00',
  `fromOsType` varchar(100) DEFAULT NULL COMMENT '手机操作系统',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8



3、处理计算的留存率的存储过程

DELIMITER $$

USE `entplus`$$

DROP PROCEDURE IF EXISTS `stat_remain_user`$$

CREATE DEFINER=`root`@`%` PROCEDURE `stat_remain_user`(IN startDate DATE)
BEGIN
DECLARE i INT;  
SET i = 1;    
  
INSERT INTO stat_remain(dru,stat_time,add_time,fromOsType) SELECT COUNT(DISTINCT userId),DATE_SUB(startDate,INTERVAL 1 DAY),NOW(
<think>好的,我现在需要帮助用户了解如何进行用户留存率的数据分析方法和工具。首先,我得回忆一下用户留存率的基本概念,然后考虑分析方法和常用工具。 用户留存率通常是衡量产品粘性的重要指标,比如新增用户在一段时间后仍然活跃的比例。常见的分析方法可能有同期群分析,这应该引用到之前提到的引用[2],里面提到用Excel和MySQL做同期群分析。另外,用户可能还需要了解其他方法,比如趋势分析、漏斗分析或者分群分析。 接下来是工具部分,Excel应该是一个基础工具,适合简单的计算和图表。但如果是处理大量数据,可能需要更专业的工具,比如SQL数据库,或者BI工具如Tableau、Power BI,这些工具能处理更复杂的数据集并生成可视化报告。另外,像Python和R这样的编程语言在数据分析中也很常用,尤其是进行更复杂的统计分析和预测模型时。 然后,我得考虑用户可能的实际应用场景,比如如何具体实施这些方法。例如,同期群分析的步骤可能包括数据收集、分组、计算留存率、可视化等。需要确保用户理解每一步的操作,可能需要结合引用[2]中的例子,用Excel进行同期群分析的具体步骤。 另外,用户可能对数据准确性有疑问,所以需要提到引用[3]中的建议,比如数据清洗、统一口径、监控机制等。这部分内容能帮助用户确保他们的分析结果是可靠的。 可能还需要提到一些高级方法,比如使用机器学习模型预测用户流失,这时候需要引用到引用[1]中提到的预测用户流失趋势的内容。不过这可能属于更深入的层面,用户如果刚入门,可能需要先掌握基础方法。 最后,生成相关问题时,要围绕用户留存率的不同方面,比如工具比较、提升策略、数据准确性、应用场景等,这样用户可以根据自己的需求进一步探索。 总结一下,回答的结构应该是先介绍用户留存率的定义,然后详细讲解分析方法,如同期群分析、趋势分析等,并对应到引用资料。接着介绍常用工具,从Excel到BI工具再到编程语言,最后强调数据准确性的要点,并给出相关问题引导深入学习。</think>### 用户留存率数据分析方法及工具 #### 一、用户留存率的核心定义 用户留存率衡量的是用户在特定时间范围内持续使用产品或服务的比例。例如,某日新增用户中,7天后仍活跃的比例称为“7日留存率”。留存率分析可帮助识别用户流失规律,优化产品策略[^1]。 #### 二、主要分析方法 1. **同期群分析(Cohort Analysis)** - **方法**:将用户按注册/首次使用时间分组,追踪各组在后续时间窗口的留存表现。 - **工具示例**: - Excel:通过数据透视表实现(如引用[2]中案例) - SQL:计算用户首次活跃时间与后续活跃状态的关联 - **输出形式**:热力图或折线图,直观展示不同群组的留存衰减趋势[^2]。 2. **趋势分析** - 分析整体留存率随时间的变化,识别产品迭代或运营活动的影响。 - 常用工具:Tableau、Power BI 的时间序列图表。 3. **分群对比分析** - 根据用户属性(如渠道、地域、行为特征)分组比较留存率差异。 - 工具要求:需支持多维数据切片,如Google Analytics的“用户分层”功能。 4. **流失预测模型** - 使用逻辑回归、随机森林等算法预测用户流失概率(引用[1]中提到的预测方法)。 - 工具:Python(Pandas、Scikit-learn)、R语言。 #### 三、常用工具对比 | 工具类型 | 代表工具 | 适用场景 | |----------------|------------------------|-----------------------------------| | 表格工具 | Excel、Google Sheets | 小数据集、快速计算同期群留存率 | | 数据库查询 | SQL(MySQL、BigQuery) | 大规模数据清洗与基础指标计算 | | 可视化BI工具 | Tableau、Looker | 交互式留存率仪表盘制作 | | 编程语言 | Python、R | 复杂分析(如流失预测、聚类分析) | #### 四、关键实施步骤(以同期群分析为例) 1. **数据准备** - 收集用户ID、首次活跃时间、每日活跃状态等字段。 2. **计算留存矩阵** - 使用SQL或Excel公式生成“群组 vs 时间窗口”的留存率矩阵。 - 示例SQL片段: ```sql SELECT cohort_week, SUM(CASE WHEN day_diff = 0 THEN 1 ELSE 0 END) AS new_users, ROUND(SUM(CASE WHEN day_diff = 7 THEN 1 ELSE 0 END)*1.0 / new_users, 2) AS retention_day7 FROM user_activity_cohorts GROUP BY cohort_week; ``` 3. **可视化与解读** - 通过热力图观察不同群组的留存衰减规律,定位异常波动点。 #### 五、数据准确性保障建议(引用[3]) - **统一统计口径**:明确“活跃用户”的定义(如打开APP vs 完成核心动作) - **数据清洗**:排除机器人账号、测试账号等噪声数据 - **实时监控**:设置异常值警报(如留存率单日暴跌超过10%)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值