202309121、什么是ASIC芯片?

本文介绍了ASIC的定义,将其与CPU、GPU和FPGA进行对比,强调了ASIC的专一性带来的优点如体积小、功耗低等,同时也指出了其针对特定应用的局限性和成本问题,特别是在深度学习中的应用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、ASIC的定义

ASIC是Application-Specific Integrated Circuit( 应用型专用集成电路)的缩写,是一种专用芯片,是为了某种特定的需求而专门定制的芯片的统称。比如专用的音频、视频处理器,同时目前很多专用的AI芯片业可以看作是ASIC的一种。

在集成电路界ASIC被认为是一种为专门目的而设计的集成电路。是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路。ASIC的特点是面向特定用户的需求,ASIC在批量生产时与通用集成电路相比具有体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低等优点。

2、ASIC与CPU、GPU、FPGA相比如何?

CPU与GPU都是我们常见的通用型芯片,它们在各自领域都可以高效地完成任务,但当同样应用于通用基础计算领域时,设计架构的差异直接导致了两种芯片性能的差异。

CPU作为通用处理器,除了满足计算要求,为了更好的响应人机交互的应用,它要能处理复杂的条件和分支,以及任务之间的同步协调,所以芯片上需要很多空间来进行分支预测与优化(control),保存各种状态(cache)以降低任务切换时的延时。这也使得它更适合逻辑控制、串行运算与通用类型数据运算。

而GPU拥有一个由数以千计的更小、更高效的ALU核心组成的大规模并行计算架构,大部分晶体管主要用于构建控制电路和Cache,而控制电路也相对简单,且对Cache的需求小,只有小部分晶体管来完成实际的运算工作。所以大部分晶体管可以组成各类专用电路、多条流水线,使得GPU的计算速度有了突破性的飞跃,拥有了更强大的处理浮点运算的能力。这决定了其更擅长处理多重任务,尤其是没有技术含量的重复性工作,比如图形计算。由于深度学习通常需要大量的训练,训练算法并不复杂,但数据非常量大,而GPU的多内核、并行处理的优势,使得其相比CPU更适合深度学习运算。

3、ASIC的缺点

ASIC芯片的缺点也很明显,因为其是针对特定应用而设计的,一旦芯片设计完毕,其所使用的环境就是固定的,所以一旦环境或者需求发生变化就可能将会无法使用。另外由于是专用的芯片,所以如果出货量不大的话,那么芯片成本就会比较高,当然出货量越大成本会越低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值