(思维)768. 最多能完成排序的块 II

探讨如何将一个包含重复元素的整数数组分割成尽可能多的块,每块内部排序后,整体连接结果与完全排序的数组一致。示例与代码解析,通过维护递减数组和前缀最大值实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个问题和“最多能完成排序的块”相似,但给定数组中的元素可以重复,输入数组最大长度为2000,其中的元素最大为10**8。

arr是一个可能包含重复元素的整数数组,我们将这个数组分割成几个“块”,并将这些块分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。

我们最多能将数组分成多少块?

示例 1:

输入: arr = [5,4,3,2,1]
输出: 1
解释:
将数组分成2块或者更多块,都无法得到所需的结果。
例如,分成 [5, 4], [3, 2, 1] 的结果是 [4, 5, 1, 2, 3],这不是有序的数组。 
示例 2:

输入: arr = [2,1,3,4,4]
输出: 4
解释:
我们可以把它分成两块,例如 [2, 1], [3, 4, 4]。
然而,分成 [2, 1], [3], [4], [4] 可以得到最多的块数。 
注意:

arr的长度在[1, 2000]之间。
arr[i]的大小在[0, 10**8]之间。

题解:1、从后向前维护一个递减的数组 b;

           2、用一个变量维护前 i 个数的最大值:maxx;

           3、判断是否可以分成一个块,情况判断:

              (1)、当遍历到数组尾部时,看作最后一个块;

              (2)、当b[i] 与 b[i+1] 之间不同时,意味着a[i]在当前最小;

                           (原数组):    a  [3,1,3,3,2,4]

                           (递增数组):b  [1,1,2,2,2,4]

              (3)、当当前最大值maxx等于b[i] (最小值)时; 

                           [0,3,0,3,2]     =>  2          [[0],[3,0,3,2]]    (这种情况当时少考虑了,wa了几发)

                           [2,2,2,2,2]   =>    5          [[2],[2],[2],[2],[2]]

class Solution {
public:

    int maxChunksToSorted(vector<int>& a) {
        int len=a.size();
        vector<int>b;
        for(int i=0;i<len;i++) b.push_back(a[i]);
        
        for(int i=len-2;i>=0;i--)
            b[i]=min(b[i],b[i+1]);

        int maxx=a[0],p=0,ans=0;       //  p 维护的是当前块的首位置
        for(int i=0;i<len;i++){
            if((i+1)==len||b[i]!=b[i+1]||maxx==b[i]){
                if(maxx!=b[i]){
                    if((i+1)==len||maxx<=b[i+1]){
                        ans++;
                        p=i+1;
                        maxx=(i+1)==len?-1:a[i+1];
                    }
                }
                else{
                    ans+=(i-p+1);
                    p=i+1;
                    maxx=(i+1)==len?-1:a[i+1];
                }
            }
            else maxx=max(maxx,a[i]);
        }
        return ans;
    }
};

/**
 *  完结散花
 */

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值