这个问题和“最多能完成排序的块”相似,但给定数组中的元素可以重复,输入数组最大长度为2000,其中的元素最大为10**8。
arr是一个可能包含重复元素的整数数组,我们将这个数组分割成几个“块”,并将这些块分别进行排序。之后再连接起来,使得连接的结果和按升序排序后的原数组相同。
我们最多能将数组分成多少块?
示例 1:
输入: arr = [5,4,3,2,1]
输出: 1
解释:
将数组分成2块或者更多块,都无法得到所需的结果。
例如,分成 [5, 4], [3, 2, 1] 的结果是 [4, 5, 1, 2, 3],这不是有序的数组。
示例 2:
输入: arr = [2,1,3,4,4]
输出: 4
解释:
我们可以把它分成两块,例如 [2, 1], [3, 4, 4]。
然而,分成 [2, 1], [3], [4], [4] 可以得到最多的块数。
注意:
arr的长度在[1, 2000]之间。
arr[i]的大小在[0, 10**8]之间。
题解:1、从后向前维护一个递减的数组 b;
2、用一个变量维护前 i 个数的最大值:maxx;
3、判断是否可以分成一个块,情况判断:
(1)、当遍历到数组尾部时,看作最后一个块;
(2)、当b[i] 与 b[i+1] 之间不同时,意味着a[i]在当前最小;
(原数组): a [3,1,3,3,2,4]
(递增数组):b [1,1,2,2,2,4]
(3)、当当前最大值maxx等于b[i] (最小值)时;
[0,3,0,3,2] => 2 [[0],[3,0,3,2]] (这种情况当时少考虑了,wa了几发)
[2,2,2,2,2] => 5 [[2],[2],[2],[2],[2]]
class Solution {
public:
int maxChunksToSorted(vector<int>& a) {
int len=a.size();
vector<int>b;
for(int i=0;i<len;i++) b.push_back(a[i]);
for(int i=len-2;i>=0;i--)
b[i]=min(b[i],b[i+1]);
int maxx=a[0],p=0,ans=0; // p 维护的是当前块的首位置
for(int i=0;i<len;i++){
if((i+1)==len||b[i]!=b[i+1]||maxx==b[i]){
if(maxx!=b[i]){
if((i+1)==len||maxx<=b[i+1]){
ans++;
p=i+1;
maxx=(i+1)==len?-1:a[i+1];
}
}
else{
ans+=(i-p+1);
p=i+1;
maxx=(i+1)==len?-1:a[i+1];
}
}
else maxx=max(maxx,a[i]);
}
return ans;
}
};
/**
* 完结散花
*/