(单调栈)1437 迈克步

1437 迈克步

  1. 1 秒
  2.  
  3. 131,072 KB
  4.  
  5. 80 分
  6.  
  7. 5 级题

有n只熊。他们站成一排队伍,从左到右依次1到n编号。第i只熊的高度是ai。

一组熊指的队伍中连续的一个子段。组的大小就是熊的数目。而组的力量就是这一组熊中最小的高度。

迈克想知道对于所有的组大小为x(1 ≤ x ≤ n)的,最大力量是多少。


 收起

输入

单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 2×10^5),表示熊的数目。
第二行包含n个整数以空格分开,a1, a2, ..., an (1 ≤ ai ≤ 10^9),表示熊的高度。

输出

在一行中输出n个整数,对于x从1到n,输出组大小为x的最大力量。

输入样例

10
1 2 3 4 5 4 3 2 1 6

输出样例

6 4 4 3 3 2 2 1 1 1

题解:记录每个元素的左边第一个比它小的,右边第一个比它小的;

           关键点:区间 x ,比区间 x 大的,对区间 x 来说都是满足的。

#include<set>
#include<map>
#include<list>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<bitset>
#include<iomanip>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#define eps (1e-8)
#define MAX 0x3f3f3f3f
#define u_max 1844674407370955161
#define l_max 9223372036854775807
#define i_max 2147483647
#define re register
#define pushup() tree[rt]=tree[rt<<1]+tree[rt<<1|1]
#define nth(k,n) nth_element(a,a+k,a+n);  // 将 第K大的放在k位
#define ko() for(int i=2;i<=n;i++) s=(s+k)%i // 约瑟夫
#define ok() v.erase(unique(v.begin(),v.end()),v.end()) // 排序,离散化
#define Catalan C(2n,n)-C(2n,n-1)  (1,2,5,14,42,132,429...) // 卡特兰数
using namespace std;

inline int read(){
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' & c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}

typedef long long ll;
const double pi = atan(1.)*4.;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fLL;
const int M=63;
const int N=1e6+5;
int n;
int a[N],l[N],r[N];
int b[N],s[N];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        a[i]=read();
    int p=0;
    for(int i=1;i<=n;i++){
        while(p&&a[s[p-1]]>=a[i]) p--;
        if(!p) l[i]=0;
        else l[i]=s[p-1];
        s[p++]=i;
    }
    memset(s,0,sizeof(s));
    p=0;
    for(int i=n;i>=1;i--){
        while(p&&a[s[p-1]]>=a[i]) p--;
        if(!p) r[i]=n+1;
        else r[i]=s[p-1];
        s[p++]=i;
    }
    for(int i=1;i<=n;i++){
        int d=r[i]-l[i]-1;
        b[d]=max(b[d],a[i]);
    }
    for(int i=n-1;i>=1;i--)
        b[i]=max(b[i],b[i+1]);
    int c=0;
    for(int i=1;i<=n;i++)
        printf(c++==0?"%d":" %d",b[i]);
    printf("\n");
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值