Codeforces 359D 想法

本文介绍了一种算法,用于寻找给定数组中最长的子数组,该子数组中存在一个元素能够整除子数组内的所有其他元素。通过不断扩展区间的方法来解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pair of Numbers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r(1 ≤ l ≤ r ≤ n), such that the following conditions hold:

  1. there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
  2. value r - l takes the maximum value among all pairs for which condition 1 is true;

Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.

Input

The first line contains integer n (1 ≤ n ≤ 3·105).

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).

Output

Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.

Examples
input
5
4 6 9 3 6
output
1 3
2 
input
5
1 3 5 7 9
output
1 4
1 
input
5
2 3 5 7 11
output
5 0
1 2 3 4 5 
Note

In the first sample the pair of numbers is right, as numbers 6, 9, 3 are divisible by 3.

In the second sample all numbers are divisible by number 1.

In the third sample all numbers are prime, so conditions 1 and 2 are true only for pairs of numbers (1, 1)(2, 2)(3, 3)(4, 4)(5, 5).


题意:给定一个正整数数组,求最长的区间,使得该区间内存在一个元素,它能整除该区间的每个元素。


题解:如果一个区间不能向右再扩展  那么下次就从这里继续寻找答案


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
ll a[300005],n;
vector<ll>sp[300005];
int main(){
	ll i,j,ans=1;
	scanf("%lld",&n);
	for(i=1;i<=n;i++)scanf("%lld",&a[i]);
	ll now=1;
	while(now<=n){
		ll mins=a[now];
		ll l=now-1,anss=1;
		while(l>=1){
			if(a[l]%mins==0){
				mins=min(mins,a[l]);
				anss++;
				l--;
			}
			else break;
		}
		ll r=now+1;
		while(r<=n){
			if(a[r]%mins==0){
				mins=min(mins,a[r]);
				anss++;
				r++;
			}
			else break;
		}
		ans=max(ans,anss);
		sp[anss].push_back(l+1);
		now=r;
	}
	printf("%lld %lld\n",(ll)sp[ans].size(),ans-1);
	for(i=0;i<sp[ans].size();i++){
		printf("%lld ",sp[ans][i]);
	}
	printf("\n");
	return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值