Codeforces 800B 计算几何

探讨如何计算一个凸多边形在保持凸性且不自交的前提下,各顶点能够移动的最大距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Volatile Kite
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a convex polygon P with n distinct vertices p1, p2, ..., pn. Vertex pi has coordinates (xi, yi) in the 2D plane. These vertices are listed in clockwise order.

You can choose a real number D and move each vertex of the polygon a distance of at most D from their original positions.

Find the maximum value of D such that no matter how you move the vertices, the polygon does not intersect itself and stays convex.

Input

The first line has one integer n (4 ≤ n ≤ 1 000) — the number of vertices.

The next n lines contain the coordinates of the vertices. Line i contains two integers xi and yi ( - 109 ≤ xi, yi ≤ 109) — the coordinates of the i-th vertex. These points are guaranteed to be given in clockwise order, and will form a strictly convex polygon (in particular, no three consecutive points lie on the same straight line).

Output

Print one real number D, which is the maximum real number such that no matter how you move the vertices, the polygon stays convex.

Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely, let's assume that your answer is a and the answer of the jury is b. The checker program will consider your answer correct if .

Examples
input
4
0 0
0 1
1 1
1 0
output
0.3535533906
input
6
5 0
10 0
12 -4
10 -8
5 -8
3 -4
output
1.0000000000
Note

Here is a picture of the first sample

Here is an example of making the polygon non-convex.

This is not an optimal solution, since the maximum distance we moved one point is  ≈ 0.4242640687, whereas we can make it non-convex by only moving each point a distance of at most  ≈ 0.3535533906.


题意:给你n个点组成的凸多边形,顺时针给出,现在求一个最大的值t,使得每个点不管怎么移动多少距离(小于等于t),他们组成的多边形还是凸多边形并且边没有交叉的。


题解:首先ans要小于min(dis(e[i],e[j])/2)

二分答案

然后对于每个点  我们找到旁边的两个点

算下这个点到这条直线的距离

如果距离除2小于t

就说明这个点能越过这条直线  这种情况不行

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n;
struct node{
    double x,y;
}e[1005];
bool check(double t){
    for(int i=1;i<=n;i++){
        int lef=i-1,rig=i+1;
        if(lef==0)lef=n;
        if(rig==n+1)rig=1;
        if(fabs(e[lef].x-e[rig].x)<0.00000001){
            if(fabs(e[rig].x-e[i].x)/2<t)return 0;
            continue;
        }
        double k=(e[rig].y-e[lef].y)/(e[rig].x-e[lef].x);
        double b=(e[lef].y*e[rig].x-e[rig].y*e[lef].x)/(e[rig].x-e[lef].x);
        if(fabs((k*e[i].x-e[i].y+b)/sqrt(k*k+1)/2)<t)return 0;
    }
    return 1;
}
int main(){
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        scanf("%lf%lf",&e[i].x,&e[i].y);
    }
    double ans=100000000000000.0;
    for(i=1;i<=n;i++){
        for(j=i+1;j<=n;j++){
            ans=min(ans,sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y))/2);
        }
    }
    double l=0,r=ans;
    for(i=1;i<=200;i++){
        double mid=(l+r)/2.0;
        if(check(mid))l=mid;
        else r=mid;
    }
    printf("%.8f\n",l);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值