You are given a convex polygon P with n distinct vertices p1, p2, ..., pn. Vertex pi has coordinates (xi, yi) in the 2D plane. These vertices are listed in clockwise order.
You can choose a real number D and move each vertex of the polygon a distance of at most D from their original positions.
Find the maximum value of D such that no matter how you move the vertices, the polygon does not intersect itself and stays convex.
The first line has one integer n (4 ≤ n ≤ 1 000) — the number of vertices.
The next n lines contain the coordinates of the vertices. Line i contains two integers xi and yi ( - 109 ≤ xi, yi ≤ 109) — the coordinates of the i-th vertex. These points are guaranteed to be given in clockwise order, and will form a strictly convex polygon (in particular, no three consecutive points lie on the same straight line).
Print one real number D, which is the maximum real number such that no matter how you move the vertices, the polygon stays convex.
Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely, let's assume that your answer is a and the answer of the jury is b.
The checker program will consider your answer correct if .
4 0 0 0 1 1 1 1 0
0.3535533906
6 5 0 10 0 12 -4 10 -8 5 -8 3 -4
1.0000000000
Here is a picture of the first sample
Here is an example of making the polygon non-convex.
This is not an optimal solution, since the maximum distance we moved one point is ≈ 0.4242640687, whereas we can make it non-convex by only moving each point a distance of at most ≈ 0.3535533906.
题意:给你n个点组成的凸多边形,顺时针给出,现在求一个最大的值t,使得每个点不管怎么移动多少距离(小于等于t),他们组成的多边形还是凸多边形并且边没有交叉的。
题解:首先ans要小于min(dis(e[i],e[j])/2)
二分答案
然后对于每个点 我们找到旁边的两个点
算下这个点到这条直线的距离
如果距离除2小于t
就说明这个点能越过这条直线 这种情况不行
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n;
struct node{
double x,y;
}e[1005];
bool check(double t){
for(int i=1;i<=n;i++){
int lef=i-1,rig=i+1;
if(lef==0)lef=n;
if(rig==n+1)rig=1;
if(fabs(e[lef].x-e[rig].x)<0.00000001){
if(fabs(e[rig].x-e[i].x)/2<t)return 0;
continue;
}
double k=(e[rig].y-e[lef].y)/(e[rig].x-e[lef].x);
double b=(e[lef].y*e[rig].x-e[rig].y*e[lef].x)/(e[rig].x-e[lef].x);
if(fabs((k*e[i].x-e[i].y+b)/sqrt(k*k+1)/2)<t)return 0;
}
return 1;
}
int main(){
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%lf%lf",&e[i].x,&e[i].y);
}
double ans=100000000000000.0;
for(i=1;i<=n;i++){
for(j=i+1;j<=n;j++){
ans=min(ans,sqrt((e[i].x-e[j].x)*(e[i].x-e[j].x)+(e[i].y-e[j].y)*(e[i].y-e[j].y))/2);
}
}
double l=0,r=ans;
for(i=1;i<=200;i++){
double mid=(l+r)/2.0;
if(check(mid))l=mid;
else r=mid;
}
printf("%.8f\n",l);
return 0;
}