五分钟学会大数定律【笔记】

参考教程

五分钟学会大数定律

大数定律

一、定义

X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn 为来自总体 X X X 的简单随机样本,记:

  • 样本均值: X ˉ = X 1 + X 2 + ⋯ + X n n \displaystyle \bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n} Xˉ=nX1+X2++Xn
  • 总体期望: E X = μ EX = \mu EX=μ

则当 n → ∞ n \to \infty n 时,样本均值依概率收敛于总体期望,即:
X ˉ ⟶ P μ ( n → ∞ ) \bar{X} \stackrel{P}{\longrightarrow} \mu \quad (n \to \infty) XˉPμ(n)

二、大数定律 - 抛硬币示例

设随机变量 ( X ) 表示抛硬币结果:

  • 正面(记为 ( +1 ) ),概率 P ( X = 1 ) = 1 2 P(X = 1) = \frac{1}{2} P(X=1)=21
  • 反面(记为 ( -1 ) ),概率 P ( X = − 1 ) = 1 2 P(X = -1) = \frac{1}{2} P(X=1)=21

即 X 的分布为:
X ∼ { 1 , P = 1 2 − 1 , P = 1 2 X \sim \begin{cases} 1, & P = \frac{1}{2} \\ -1, & P = \frac{1}{2} \end{cases} X{1,1,P=21P=21
期望计算:
E X = 1 × 1 2 + ( − 1 ) × 1 2 = 0 EX = 1 \times \frac{1}{2} + (-1) \times \frac{1}{2} = 0 EX=1×21+(1)×21=0
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值