这里写自定义目录标题
参考教程
大数定律
一、定义
设 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,…,Xn 为来自总体 X X X 的简单随机样本,记:
- 样本均值: X ˉ = X 1 + X 2 + ⋯ + X n n \displaystyle \bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n} Xˉ=nX1+X2+⋯+Xn
- 总体期望: E X = μ EX = \mu EX=μ
则当
n
→
∞
n \to \infty
n→∞ 时,样本均值依概率收敛于总体期望,即:
X
ˉ
⟶
P
μ
(
n
→
∞
)
\bar{X} \stackrel{P}{\longrightarrow} \mu \quad (n \to \infty)
Xˉ⟶Pμ(n→∞)
二、大数定律 - 抛硬币示例
设随机变量 ( X ) 表示抛硬币结果:
- 正面(记为 ( +1 ) ),概率 P ( X = 1 ) = 1 2 P(X = 1) = \frac{1}{2} P(X=1)=21
- 反面(记为 ( -1 ) ),概率 P ( X = − 1 ) = 1 2 P(X = -1) = \frac{1}{2} P(X=−1)=21
即 X 的分布为:
X
∼
{
1
,
P
=
1
2
−
1
,
P
=
1
2
X \sim \begin{cases} 1, & P = \frac{1}{2} \\ -1, & P = \frac{1}{2} \end{cases}
X∼{1,−1,P=21P=21
期望计算:
E
X
=
1
×
1
2
+
(
−
1
)
×
1
2
=
0
EX = 1 \times \frac{1}{2} + (-1) \times \frac{1}{2} = 0
EX=1×21+(−1)×21=0