文章目录
转载自有趣的数
增强了其文本可读性
一、对称数
定义
一个整数,它的各位数字如果是左右对称的,则称这个数是对称数。
* 例如:1234321、123321等。
* 一般来说,位数大于或等于两位。最小的对称数是11,没有最大的对称数,因为数位是无穷的。
分类
- 对称数可以分为奇位对称数和偶位对称数。
- 奇位对称数是指位数是奇数的对称数。奇位对称数位数最中间的那个数字称为对称轴数。
- 偶位对称数是指位数是偶数的对称数。偶位对称数没有对称轴数。
产生方法
产生对称数的方法有两种:
- 形如11、111、1111、……的数的平方数是对称数。如:
11×11=121
111×111=12321
1111×1111=1234321
- 某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,也可得到对称数。
如:475
475+574=1049
1049+9401=10450
10450+05401=15851
15851便是对称数。
二、 完全数
- 完全数(Perfect number,又称完美数)是一些特殊的自然数。
- 对于“4”这个数,它的真因子有1、2,其和是3。由于4本身比其真因子之和大,这样的数就叫做盈数。对于“12”这个数,它的真因子有1、2、3、4、6,其和是16。由于12本身比其真因子之和要小,这样的数就叫做亏数。那么有没有既不盈余,又不亏欠的数呢?即等于它自己的所有真因子之和的数,这样的数就叫做完全数。
- 毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数。毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身。”不过,或许印度人和希伯来人早就知道它们的存在了。有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数。圣·奥古斯丁说:6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完数,所以上帝在六天之内把一切事物都造好了,即使没有上帝创造世界这种事,6仍旧不失其为完数。
- 完全数诞生后,吸引着众多数学家与业余爱好者像淘金一样去寻找。它很久以来就一直对数学家和业余爱好者有着一种特别的吸引力,他们没完没了地找寻这一类数字。接下去的两个完数看来是公元1世纪,毕达哥拉斯学派成员尼克马修斯发现的,他在其《数论》一书中有一段话如下:也许是这样:正如美的、卓绝的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;是以盈数和亏数非常之多,杂乱无章,它们的发现也毫无系统。但是完全数则易于计数,而且又顺理成章:因为在个位数里只有一个6;十位数里也只有一个28;第三个在百位数的深处,是496;第四个却在千位数的尾巴上,接近一万,是8128。它们具有一致的特性:尾数都是6或8,而且永远是偶数。第五个完全数要大得多,是33550336,它的寻求之路也艰难得多,直到十五世纪才由一位无名氏给出。这一寻找完全数的努力从来没有停止。电子计算机问世后,人们借助这一有力的工具继续探索。笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完美人亦非易事。”时至今日,人们一直没有发现有奇完全数的存在。于是是否存在奇完全数成为数论中的一大难题。目前,只知道即便有,这个数也是非常之大,并且需要满足一系列苛刻的条件。
- 欧几里德曾推算出完全数的获得公式:如果
2
p
−
1
2^p - 1
2p−1是质数,那么
(
2
p
−
1
)
∗
2
(
p
−
1
)
(2^p - 1) * 2^(p-1)
(2p−1)∗2(p−1)便是一个完全数。
- p=2, 2 p − 1 = 3 2^p - 1 = 3 2p−1=3是质数, ( 2 p − 1 ) ∗ 2 ( p − 1 ) = 3 ∗ 2 = 6 (2^p - 1) * 2^(p-1) = 3 * 2 = 6 (2p−1)∗2(p−1)=3∗2=6
- p=3, 2 p − 1 = 7 2^p - 1 = 7 2p−1=7是质数, ( 2 p − 1 ) ∗ 2 ( p − 1 ) = 7 ∗ 4 = 28 (2^p - 1) * 2^(p-1) = 7 * 4 = 28 (2p−1)∗2(p−1)=7∗4=28
- 但是 2 p − 1 2^p - 1 2p−1什么条件下才是质数呢?
- 当 2 p − 1 2^p - 1 2p−1是质数的时候,称其为梅森素数!顾名思义,就是梅森(Marin Mersenne)第一个系统地研究这种形式的素数的!事实上,至今(注:原文数据截至2006年),人类只发现了44个梅森素数,也就是只发现了44个完全数!
【梅森素数表】
序号 | p | 位数 | 发现时间 | 发现者 (reference) |
---|---|---|---|---|
1 | 2 | 1 | (无从考究) | (无从考究) |
2 | 3 | 2 | (无从考究) | (无从考究) |
3 | 5 | 3 | (无从考究) | (无从考究) |
4 | 7 | 4 | (无从考究) | (无从考究) |
5 | 13 | 8 | 1461 | Reguis(1536), Cataldi(1603) |
6 | 17 | 12 | 1588 | Cataldi (1603) |
7 | 19 | 19 | 1588 | Cataldi (1603) |
8 | 31 | 10 | 1750 | Euler (1772) |
9 | 61 | 19 | 1883 | Pervouchine (1883), Seelhoff (1886) |
10 | 89 | 27 | 1911 | Powers (1911) |
11 | 107 | 33 | 1913 | Powers (1914) |
12 | 127 | 39 | 1876 | Lucas (1876) |
13 | 521 | 157 | Jan. 30, 1952 | Robinson (1954) |
14 | 607 | 183 | Jan. 30, 1952 | Robinson (1954) |
15 | 1279 | 386 | Jun. 25, 1952 | Robinson (1954) |
16 | 2203 | 664 | Oct. 7, 1952 | Robinson (1954) |
17 | 2281 | 687 | Oct. 9, 1952 | Robinson (1954) |
18 | 3217 | 969 | Sep. 8, 1957 | Riesel |
19 | 4253 | 1281 | Nov. 3, 1961 | Hurwitz |
20 | 4423 | 1332 | Nov. 3, 1961 | Hurwitz |
21 | 9689 | 2917 | May 11, 1963 | Gillies (1964) |
22 | 9941 | 2993 | May 16, 1963 | Gillies (1964) |
23 | 11213 | 3376 | Jun. 2, 1963 | Gillies (1964) |
24 | 19937 | 6002 | Mar. 4, 1971 | Tuckerman (1971) |
25 | 21701 | 6533 | Oct. 30, 1978 | Noll and Nickel (1980) |
26 | 23209 | 6987 | Feb. 9, 1979 | Noll (Noll and Nickel 1980) |
27 | 44497 | 13395 | Apr. 8, 1979 | Nelson and Slowinski |
28 | 86243 | 25962 | Sep. 25, 1982 | Slowinski |
29 | 110503 | 33265 | Jan. 28, 1988 | Colquitt and Welsh (1991) |
30 | 132049 | 39751 | Sep. 20, 1983 | Slowinski |
31 | 216091 | 65050 | Sep. 6, 1985 | Slowinski |
32 | 756839 | 227832 | Feb. 19, 1992 | Slowinski and Gage |
33 | 859433 | 258716 | Jan. 10, 1994 | Slowinski and Gage |
34 | 1257787 | 378632 | Sep. 3, 1996 | Slowinski and Gage |
35 | 1398269 | 420921 | Nov. 12, 1996 | Joel Armengaud/GIMPS |
36 | 2976221 | 895832 | Aug. 24, 1997 | Gordon Spence/GIMPS |
37 | 3021377 | 909526 | Jan. 27, 1998 | Roland Clarkson/GIMPS |
38 | 6972593 | 2098960 | Jun. 1, 1999 | Nayan Hajratwala/GIMPS |
39 | 13466917 | 4053946 | Nov. 14, 2001 | Michael Cameron/GIMPS |
40 | 20996011 | 6320430 | Nov. 17, 2003 | Michael Shafer/GIMPS |
41 | 24036583 | 7235733 | May 15, 2004 | Josh Findley/GIMPS |
42 | 25964951 | 7816230 | Feb. 18, 2005 | Martin Nowak/GIMPS |
43 | 30402457 | 9152052 | Dec. 15, 2005 | Curtis Cooper and Steven Boone/GIMPS |
44 | 32582657 | 9808358 | Sep. 4, 2006 | Curtis Cooper and Steven Boone/GIMPS |
- 第44个梅森素数(当时)是现今人类已知的最大的素数!
三、圣经数
- 153被称作“圣经数”。这个美妙的名称出自圣经《新约全书》中约翰福音第21章:耶稣对他们说:“把刚才打的鱼拿几尾来。”西门·彼得就去把网拉到岸上。那网网满了大鱼,共一百五十三尾。鱼虽这样多,网却没有破。
- 奇妙的是,153具有一些有趣的性质。**153是1~17连续自然数的和,即:1+2+3+……+17=153。**任写一个3的倍数,把各位数字的立方相加,得出和,再把和的各位数字立方后相加,如此反复进行,最后必然出现“圣经数”。
- 例如:24是3的倍数,按照上述规则,进行变换的过程是:
- 24→2³+4³=8+64=72→7³+2³=343+8=351→3³+5³+1³=27+125+1=153 → “圣经数”出现了!
- 再如,123是3的倍数,变换过程是:
- 123→1³+2³+3³=1+8+27=36→3³+6³=27+216=243→2³+4³+3³=8+64+27=99→9³+9³=729+729=1458→1³+4³+5³+8³=1+64+125+512=702→7³+0³+2³=343+0+8=351→3³+5³+1³=27+125+1=153 → "圣经数"出现了!
- 例如:24是3的倍数,按照上述规则,进行变换的过程是:
- "圣经数"的这一奇妙的性质是以色列人**科恩(P. Kohn)发现的。后来,世界著名科普杂志—英国<<新科学家>>周刊上负责常设专栏的一位学者奥皮亚奈(T. H. O’Beirne)**已对此作了证明。<<美国数学月刊>>对有关问题作了进一步探讨。
四、自守数
- 定义:如果某个数的平方的末尾几位数等于这个数,那么就称这个数为自守数。
- 显然,5和6是一位自守数(5x5=25; 6x6=36)
- 25x25=625; 76x76=5776,所以25和76是两位自守数。
- 特性:以它为后几位的两个数相乘,乘积的后几位仍是这个自守数。
- 因为5是自守数,所以以5为个位数的两个数相乘,乘积的个位仍然是5;
- 76是自守数,所以以76为后两位数的两个数相乘,其结果的后两位仍是76,如176x576=101376(注:原文计算有误,176*576=101376,正确)。
- 注意:虽然0和1的平方的个位数仍然是0和1,但是他们太“平凡”了,研究他们没有意义,所以不算自守数。
- 更多自守数:
- 三位自守数是625和376(625²=390625; 376²=141376)
- 四位自守数是0625和9376(0625²=390625 -> 0625需看作0625;9376²=87909376)
- 五位自守数是90625和09376(90625²=8212890625;09376²=87909376 -> 09376需看作09376)
- ……
- 规律:
- (n+1)位的自守数出自n位的自守数。如果知道n位的自守数a,那么(n+1)位的自守数应当由a前面加上一个数构成。
- 简化一下,还能发现如下有趣规律:
- 5 + 6 = 11 (10¹ + 1)
- 25 + 76 = 101 (10² + 1)
- 625 + 376 = 1001 (10³ + 1)
- … 即两个n位自守数,他们的和等于 1 0 n + 1 10^n + 1 10n+1。
五、自我生成数 (数字黑洞)
- 定义:一个数,将它各位上的数按照一定规则经过数次转换后,最后落在一个数上,再作转换,便不再产生新数了,任你按规则反复演变,它仍是“自己”,我们把这个数称作“自我生成数”或数字黑洞。
- 三位数黑洞:495
- 规则:任写一个数字不同的三位数,将组成这个数的三个数字重新组合,使它成为由这三个数字组成的最大数和最小数,而后求出新组成的两个数的差。重复此过程。
- 以213为例:
- 321 (最大) - 123 (最小) = 198
- 981 - 189 = 792
- 972 - 279 = 693
- 963 - 369 = 594
- 954 - 459 = 495
- 954 - 459 = 495 … (锁定)
- 四位数黑洞:6174 (Kaprekar常数)
- 规则同上(取最大排列减最小排列)。
- 以7642为例:
- 7642 (原数) -> 最大7642 - 最小2467 = 5175
- 7551 - 1557 = 5994
- 9954 - 4599 = 5355
- 5553 - 3555 = 1998
- 9981 - 1899 = 8082
- 8820 - 0288 (即288) = 8532
- 8532 - 2358 = 6174
- 7641 - 1467 = 6174 … (锁定)
六、魔术数
- 定义:将自然数N接写在每一个自然数的右面, 如果得到的新数都能被N整除, 那么N称为魔术数。
- 例如:N=5是一个魔术数吗?取任意自然数如31,接写5变成315。315 ÷ 5 = 63,能整除。再取7,接写5变成75,75 ÷ 5 = 15,能整除。需要验证所有自然数接写N后都能被N整除,N才是魔术数。
七、 幸运数
- 定义:若一个自然数各位数字之和与各位数字之积的和恰好等于这个自然数,把这样的自然数叫做“幸运数”。
- 问题:试求出所有“幸运数”的和。
八、奇异数 (物理学概念)
- 定义:用以表征奇异粒子的量子数,叫奇异数,记为S。
- 规则:
- 取一个奇异夸克的奇异数S=+1;
- 一个反奇异夸克的奇异数S=-1;
- 没有奇异夸克或奇异夸克的奇异数抵消为0的粒子的奇异数S=0。
- 守恒性:在强相互作用和电磁作用中,奇异数守恒;在弱相互作用中不守恒。
- 另一种定义:S=2(Q - I₃) - B,其中Q为电荷,I₃为同位旋第三分量,B为重子数。
九、地球数365
- 来源:地球围绕太阳旋转一周,便是一年(平年约365天),因此365被称为“地球数”。
- 奇妙性质:
- 10、11、12三个数的平方和,恰是365!
- 10²+11²+12²=100+121+144=365。
- 13和14的平方和,也是365。
- 13²+14²=169+196=365。
- 10、11、12三个数的平方和,恰是365!
- 地球数算式:
- (10²+11²+12²+13²+14²)÷365=(100+121+144+169+196)/ 365 = 730 / 365 = 2。
- 连续数平方链:
- 10²+11²+12²=13²+14² (5个连续数:10-14,左3项=右2项)
- 想起勾股数:3²+4²=5² (3个连续数:3-5,左2项=右1项)
- 左四项、右三项:21²+22²+23²+24²=25²+26²+27² (7个连续数:21-27)
- 左五项、右四项:36²+37²+38²+39²+40²=41²+42²+43²+44² (9个连续数:36-44)
- 规律:等式的右端是m项,则左端是(m+1)项。这一连串自然数最中心的一个数,应该是 k = 2 m ( m + 1 ) k = 2m(m+1) k=2m(m+1)。找到了中心数k(如上述各式中的4, 12, 24, 40),其他各数便可依次写出来(左边从 k − m k - m k−m到 k k k,右边从 k + 1 k+1 k+1到 k + m k + m k+m)。
十、逆序数 (排列组合概念)
- 定义:在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
- 分类:逆序数为偶数的排列称为偶排列;逆序数为奇数的排列称为奇排列。
- 例子:在排列2431中:
- 2>1 (位置1>4), 4>3 (位置2>3), 4>1 (位置2>4), 3>1 (位置3>4) 是逆序。
- 逆序数是4(共4个逆序对)。
- 4是偶数,所以2431是偶排列。
十一、堆数奇观
- 数字虽然非常普通,但又非常奇妙。我们的祖先已经与数字打了几千年的交道了,人们早就注意到并且在不断研究数字的一些有趣的性质,不少趣题一直流传至今。下面我们一起来进行这样一个游戏。
- 游戏:给你三个1,不用任何加减乘除运算符号,请写出可能的最大数和最小数。
- 答案:最大数是111,最小数是 1 1 1 = 1 1 = 1 1^{1^1} = 1^1 = 1 111=11=1或者 1 11 = 1 1^{11} = 1 111=1。
- 探索规律:试一试三个2的情况,再试一试三个3的情况,进而去探索一般有什么规律。
- 三个2:
- 可能数:222, 22², 2²², 2^{22}
- 计算:222=4, 22²=484, 2²²=2⁴=16, 2^{22}=4194304
- 结果:最小数是2²²=16 (或写作 2 2 2 2^{2^2} 222),最大数是 2 22 2^{22} 222=4194304。
- 三个3:
- 可能数:333, 33³, 3 3 3 3^{3^3} 333, 3 33 3^{33} 333
- 计算:333=27, 33³=35937, 3 3 3 3^{3^3} 333,= 3 27 3^{27} 327=7625597484987, 3 33 3^{33} 333=5559060566555523
- 结果:最小数是333=27,最大数是 3 3 3 3^{3^3} 333= 3 27 3^{27} 327=7625597484987。 (注: 3 3 3 3^{3^3} 333即 3 27 3^{27} 327远大于 3 33 3^{33} 333)
- 三个2:
- 发现规律:继续试验4到9:
- 三个4:最小数 4 4 4 = 4 256 4^{4^4}=4^{256} 444=4256(巨大), 最大数 4 44 4^{44} 444(更大)。 -> 最小数 4 4 4 4^{4^4} 444,最大数 4 44 4^{44} 444
- 三个5/6/7/8:同三个4规律。-> 最小数 a a a a^{a^a} aaa,最大数 a a a a^{aa} aaa
- 三个9:最小数 9 9 9 9^{9^9} 999(难以想象的大), 最大数 9 99 9^{99} 999(更更大)。 -> 最小数 9 9 9 9^{9^9} 999,最大数 9 99 9^{99} 999
- 总结规律 (a=1,2,3…9):
- a=1:最小数=1,最大数=111
- a=2:最小数= 2 2 2 = 16 2^{2^2}=16 222=16,最大数= 2 22 = 4194304 2^{22}=4194304 222=4194304
- a=3:最小数= 3 3 3 = 3 27 3^{3^3}=3^{27} 333=327,最大数= 3 33 3^{33} 333
- a>=4:最小数= a a a a^{a^a} aaa,最大数= a a a a^{aa} aaa (即 a 10 a + a a^{10a+a} a10a+a)
- 数学证明思路:比较四种形式:
a
a
a
aaa
aaa,
a
a
a
a^{aa}
aaa,
a
a
a
a^{a^a}
aaa,
a
a
a
aa^a
aaa。
- 核心是比较 a a a a^{a^a} aaa 和 a a a a^{aa} aaa。因为当 a > = 2 a>=2 a>=2时,指数增长极快,指数的大小起决定性作用。
- a a a a^{a^a} aaa 的指数是 a a a^a aa。
- a a a a^{aa} aaa的指数是 a a aa aa (即 10 a + a = 11 a 10a + a = 11a 10a+a=11a)。
- 比较
a
a
a^a
aa 和
11
a
11a
11a:
-
a = 2 a=2 a=2: 2 2 = 4 2^2=4 22=4 vs 11 ∗ 2 = 22 11*2=22 11∗2=22 -> 4 < 22 4 < 22 4<22-> a a a = 2 4 = 16 a^{a^a} = 2^4 = 16 aaa=24=16 < 2 22 2^{22} 222
-
a = 3 a=3 a=3: 3 3 = 27 3^3=27 33=27 vs 11 ∗ 3 = 33 11*3=33 11∗3=33 -> 27 < 33 27 < 33 27<33 -> 3 27 < 3 33 3^{27} < 3^{33} 327<333
-
a = 4 a=4 a=4: 4 4 = 256 4^4=256 44=256 vs 11 ∗ 4 = 44 11*4=44 11∗4=44 -> 256 > 44 256 > 44 256>44 -> 4 256 > 4 44 4^{256} > 4^{44} 4256>444
-
a ≥ 4 a \geq 4 a≥4: a a a^a aa 的增长速度远超 11 a 11a 11a,所以当 a ≥ 4 a \geq 4 a≥4 时, a a > 11 a a^a > 11a aa>11a,因此 a a a > a a 2 a^{a^a} > a^{a^2} aaa>aa2。此时 a a a a^{a^a} aaa是最大数, a a 2 a^{a^2} aa2是第二大数,而最小数是 ( 11 a ) a (11a)^a (11a)a(如 4 4 4 4^{4^4} 444最大, 4 16 = 4294967296 4^{16}=4294967296 416=4294967296次之, 4 4 4 = 3748096 44^4=3748096 444=3748096最小)。
-
- 启示:这个奇妙的事实说明数学规律常超越直觉想象。数字的形态变化(堆叠方式)能产生数量级的巨大跃迁。解决问题的方法是:实践—观察—思考规律—推证规律—指导实践。
- 延伸:对于四个以至更多个的相同数,它们的堆法规律更为复杂,有待进一步探索。