
概率统计合集
文章平均质量分 95
理解概率论的常识
金色光环
景和知晴,岁岁长青。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【详细笔记】两类曲线积分转换
两类曲线积分之间存在重要联系:第二类曲线积分∫L Pdx+Qdy可以转化为第一类曲线积分∫L (Pcosα + Qcosβ)ds,其中α、β为曲线切线与坐标轴的夹角。这种转换通过弧长元素ds与坐标微分dx=cosα·ds、dy=cosβ·ds的关系实现。物理上可理解为变力做功的两种计算方式:或分解为坐标分量积分,或投影到切线方向积分。参数方程曲线中,方向余弦cosα、cosβ由导数φ'(t)、ψ'(t)与模长决定。这一联系公式是曲线积分理论的核心,体现了坐标积分与弧长积分的本质统一。原创 2025-07-20 23:01:45 · 1249 阅读 · 0 评论 -
【超详细笔记】概率:中心极限定理的直观理解——样本均值为何趋近正态
摘要:中心极限定理指出,无论总体分布如何,当样本量足够大时,样本均值的分布会趋近于正态分布。通过掷骰子、收入调查等示例可见,多次抽样的均值会围绕总体均值形成正态分布。软件模拟进一步验证了该定理在均匀分布、偏态分布和自定义分布中的普适性,均显示大样本下均值分布趋近正态且期望等于总体期望。这为统计推断提供了重要理论基础。原创 2025-07-19 19:15:48 · 955 阅读 · 0 评论 -
对称数、完全数、圣经数、自守数 、自我生成数、魔术数 、 幸运数 、奇异数 、地球数365 、逆序数 、堆数奇观
一个整数,它的各位数字如果是左右对称的,则称这个数是对称数。* 例如:1234321、123321等。* 一般来说,位数大于或等于两位。最小的对称数是11,没有最大的对称数,因为数位是无穷的。原创 2025-07-19 09:13:52 · 850 阅读 · 0 评论 -
五分钟学会大数定律【笔记】
摘要: 大数定律指出,当样本容量n趋近于无穷时,样本均值会依概率收敛于总体期望。以抛硬币为例,设X表示结果(+1为正面,-1为反面),其期望EX=0。随着试验次数增加,样本均值将趋近于0,验证了大数定律的核心思想:大量独立重复试验下,随机事件的频率会稳定于理论概率。原创 2025-07-17 22:54:14 · 974 阅读 · 0 评论 -
统计学:参数估计和假设检验【超详细笔记】
H0H1H0。原创 2025-07-14 22:42:46 · 1211 阅读 · 0 评论 -
切比雪夫不等式的理解以及推导【超详细笔记】
本文介绍了切比雪夫不等式及其在概率论中的重要意义。该不等式给出了随机变量偏离期望值的概率上界,公式为$P{|X - EX| \geq \varepsilon} \leq \frac{DX}{\varepsilon^2}$。与正态分布的3σ法则相比,切比雪夫不等式适用范围更广但估计更保守。文章还详细推导了马尔可夫不等式和切比雪夫不等式的证明过程,通过变量代换和期望定义,展示了切比雪夫不等式如何从马尔可夫不等式推导而来。这些不等式为分析随机变量分布提供了重要工具。原创 2025-07-17 22:25:14 · 1264 阅读 · 0 评论 -
概率论:理解区间估计【超详细笔记】
本文详细介绍了区间估计的理论与应用。文章首先通过年龄估计的例子说明区间估计相比点估计的优势,即兼顾可靠性与精度。在数学描述中,定义了置信度(1-α)和显著性水平(α)的概念。针对正态总体N(μ,σ²),分别就σ²已知和未知两种情况,推导了μ的置信区间:当σ²已知时,使用标准正态分布构建区间;当σ²未知时,则采用t分布进行计算。推导过程详细展示了枢轴变量法的应用,并给出了两种情况下置信区间的具体表达式。全文通过公式推导和图形辅助,系统性地阐述了区间估计的原理和方法。原创 2025-07-11 00:48:06 · 418 阅读 · 0 评论