计算机视觉——角点检测

本文详细介绍了如何在Python中使用PCV库实现Harris角点检测和SIFT特征提取,并对比两者在特征检测上的差异。Harris角点检测基于图像灰度变化,而SIFT特征提取提供更多的细节和稳定性。SIFT算法检测到的特征点更多,且运算速度和定位精度较高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

S实验内容:

1.分别实现Harris角点检测与SIFT特征提取,对比两者的区别

Harris角点检测概念:

总的来说就是当图像灰度发生明显变化时,这个点就是角点,角点对掌握目标的轮廓特征具有决定作用

判断角点的方法:

分别对平均区域、边缘区域、角落区域进行计算,观察结果:

 

 取最小值,边缘特征值就会为0,可以使边缘与角点区分开来。

这种方法的缺点:窗口滑动只有8个方向,当边缘角落的角度不落在这8个方向则检测不准。

Harris角点检测方法:

数学定义:

 公式化简:

泰勒公式回顾:

 

 

 

import filters
from pylab import *
from PIL import Image
from PCV.localdescriptors import harris
# 读入图像


if __name__ == '__main__':
    im = array(Image.open('D:/PycharmProjects/pythonProject/empire.jpg').convert('L'))


# 检测harris角点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值