blockchain9miner
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
59、Snappy与Scarab:算法组合与原型工具的技术解析
本文深入解析了Snappy与Scarab两种技术工具的设计与应用。Snappy是一种基于在线学习的简单高效算法组合方法,具有良好的实时决策能力和竞争力;Scarab是一个基于SAT的约束编程原型工具,具备强大的表达性、高效性、可定制性和便携性。文章通过性能对比、代码示例和应用场景分析,展示了两者在各自领域的技术优势,并展望了其未来发展方向。原创 2025-08-16 04:52:08 · 2 阅读 · 0 评论 -
58、软约束引导的 SAT 求解器与简单算法组合的研究
本文介绍了两种解决布尔可满足性问题(SAT)的新方法:SCSat 和 Snappy。SCSat 是一种软约束引导的 SAT 求解器,通过引入软约束机制(如 Z-SC 和 U-SC)优化了对复杂问题如拉姆齐问题的求解效率。Snappy 是一种无需训练的简单算法组合工具,利用 Python 实现,通过实时学习和灵活的参数调整,提升了多求解器协作的性能。文章详细探讨了两者的实现机制、优化方向和实际应用流程,并展望了未来的研究方向。原创 2025-08-15 15:51:04 · 3 阅读 · 0 评论 -
57、MUStICCa与SCSat:SAT求解工具的创新与应用
本文介绍了两种创新的SAT求解工具:MUStICCa和SCSat。MUStICCa是一款交互式工具,用于引导基于删除的最小不可满足子式(MUS)提取算法,支持图形化探索搜索空间并通过约简代理实现自动化操作。SCSat是一款基于软约束的SAT求解器,通过引入可放松的软约束机制,显著提升了在硬可满足实例中寻找模型的效率。文章还探讨了它们的应用实例和未来发展方向,并对两者进行了对比分析,以帮助用户根据具体需求选择合适的工具。原创 2025-08-14 10:01:59 · 2 阅读 · 0 评论 -
56、布尔可满足性问题相关工具与算法研究
本文探讨了布尔可满足性问题相关的复杂度分析与实用工具开发。重点研究了弱后门集检测的上下界问题,揭示了其在 MATCH、RHORN 和 QHORN 类中的 W[2]-困难性,并基于强指数时间假设(SETH)讨论了算法复杂度的理论边界。同时,介绍了 LearnSAT 和 MUStICCa 两款工具的设计与应用。LearnSAT 是一款教育导向的 SAT 求解器,支持多种运行模式和灵活输出,有助于学生理解 DPLL、CDCL 等核心算法;MUStICCa 是一种交互式 MUS 提取工具,通过可视化界面和先进技术增原创 2025-08-13 10:08:42 · 1 阅读 · 0 评论 -
55、弱后门集检测的上下界分析
本文围绕命题逻辑中的弱后门集检测问题展开研究,重点分析了在不同基类下WB(3CNF, B)问题的参数化复杂度。通过结合指数时间假设(ETH)和强指数时间假设(SETH),推导了多个基类(如HORN、KROM、FOREST等)的弱后门集检测问题的时间复杂度上下界,并提出了改进的上界算法。研究结果深化了对弱后门集结构的理解,并为设计高效算法提供了理论依据。原创 2025-08-12 09:40:11 · 1 阅读 · 0 评论 -
54、局部骨干和迭代局部骨干的复杂性与实验研究
本博文围绕布尔可满足性问题(SAT)中的局部骨干和迭代局部骨干展开复杂性与实验研究。文章分析了不同公式类(如Horn公式、Krom公式)下局部骨干和迭代局部骨干的计算复杂性,包括W[1]-困难和NP-困难问题。同时,通过实验验证了不同领域SAT实例中局部骨干和迭代局部骨干的分布特性,揭示了这些概念在结构化实例中的重要意义,并探讨了其在SAT求解器优化、问题结构识别和算法设计中的潜在应用。原创 2025-08-11 14:18:28 · 0 阅读 · 0 评论 -
53、局部骨干:公式复杂性与求解问题的深入剖析
本文深入探讨了逻辑公式中局部骨干问题的复杂性,分析了CNF、DEFHORN、NUHORN、KROM和VOd等不同公式类的参数化复杂性结果。通过理论分析与证明,揭示了局部骨干问题在不同公式结构下的求解难度,并总结了其在SAT求解和组合优化领域的应用前景。原创 2025-08-10 16:35:42 · 1 阅读 · 0 评论 -
52、自认知逻辑定理证明复杂度与局部骨干变量研究
本文研究了自认知逻辑的证明复杂度与命题CNF公式的局部骨干变量问题。在自认知逻辑方面,分析了轻信与怀疑推理的证明系统,证明了怀疑演算SAEL中存在指数下界,并探讨了其与命题逻辑证明复杂度的关系。在局部骨干变量方面,提出了k-骨干变量和迭代k-骨干变量的概念,研究了其参数化复杂度,并讨论了其在知识编译、约束满足问题和硬件验证等实际场景中的应用价值。研究结果不仅加深了对逻辑推理复杂性的理论理解,也为优化求解算法提供了新思路。原创 2025-08-09 10:00:03 · 1 阅读 · 0 评论 -
51、拉姆齐定理与自认知逻辑定理证明的复杂度分析
本博文探讨了拉姆齐定理在切割平面证明系统中的秩复杂度,以及自认知逻辑中轻信和怀疑推理的证明复杂度。通过分析拉姆齐定理的反驳过程及相关声明的证明,揭示了其在切割平面系统中所需的高秩复杂性。同时,研究了自认知逻辑的演算规则及其与经典逻辑证明系统LK的复杂度关系,指出轻信推理的复杂度与经典逻辑紧密相关,而怀疑推理则具有指数下界。这些研究为理解非单调逻辑的本质及其在实际应用中的影响提供了理论支持,并提出了未来研究的方向,包括秩与长度的关系以及自认知逻辑中更自然公式的复杂度分析。原创 2025-08-08 13:40:26 · 1 阅读 · 0 评论 -
50、切割平面法证明拉姆齐定理的秩分析
本文探讨了利用切割平面法证明拉姆齐定理时的复杂性度量——秩,并给出了秩的下界分析。通过构建基于仿射不等式的证明系统,将拉姆齐陈述转化为CNF,并结合保护引理和证明者-延迟者游戏的方法,证明了对于偶数k,切割平面证明系统的秩下界为2^{k/2 - 1}。研究为理解切割平面法在图论定理证明中的应用提供了理论支持,并为未来优化证明方法和探索其他证明系统提供了方向。原创 2025-08-07 14:02:32 · 1 阅读 · 0 评论 -
49、知识编译与拉姆齐定理证明复杂度研究
本博文围绕知识编译与拉姆齐定理证明复杂度两大研究领域展开。在知识编译方面,详细介绍了电路转换为可分解否定范式(dnnf)的理论框架与算法流程,并探讨了复杂度优化、扩展至sdd、引入rankwidth参数以及电路dnnf大小与变量数关系等未来研究方向。在拉姆齐定理证明复杂度方面,总结了不同证明系统(如消解、切割平面)对拉姆齐定理命题的证明难度,分析了已知结论,并提出了切割平面系统下界研究、非对角拉姆齐数复杂度以及证明系统强度比较等后续研究课题。博文旨在为相关领域的研究者提供理论参考与问题导向。原创 2025-08-06 16:27:06 · 0 阅读 · 0 评论 -
48、团宽与知识编译:定理证明与电路性质分析
本文围绕F*电路的性质展开,详细证明了定理2与定理3。定理2表明F*电路是无环且格式良好的,并且其每个门的计算函数与原电路F等价。定理3则揭示了F*的树宽上限与(T, G)宽度之间的关系,结合引理分析了电路结构复杂度。文章通过多个引理推导,为知识编译与电路设计提供了理论支持与应用指导。原创 2025-08-05 13:28:29 · 1 阅读 · 0 评论 -
47、团宽与知识编译
本文探讨了图参数团宽(Cliquewidth)与布尔电路知识编译之间的关系。研究表明,团宽比树宽更强,适用于包含稠密图的更广泛图类。对于团宽为 k 的布尔电路 Z,可以构造一个树宽至多为 18k + 2 且门数量至多为 4|Z| 的等价电路 Z*,并在 O(k^2n) 时间内完成。这一成果首次实现了以团宽为参数的高效知识编译,将电路 Z 编译为大小为 O(9^{18k}k^2|Z|) 的可分解否定范式(dnnf)。研究拓展了知识编译的输入范围,特别是在处理底层图为稠密图的电路时展现出显著优势。原创 2025-08-04 15:50:56 · 1 阅读 · 0 评论 -
46、基于SAT的团宽度计算方法
本文介绍了一种基于布尔可满足性(SAT)问题的精确计算图团宽度的方法。通过引入代表变量和顺序变量的结合编码策略,显著提升了计算效率,尤其在处理小规模图时表现出色。文章展示了该方法在著名命名图、随机图和素图上的实验结果,并讨论了其在理论研究和实际应用中的潜力。此外,还分析了该方法的优势与局限性,并提出了未来的研究方向。原创 2025-08-03 13:45:45 · 1 阅读 · 0 评论 -
45、团宽度的SAT求解方法
本文介绍了一种基于SAT求解的图团宽度计算方法,通过引入k-图、k-表达式和推导等概念,将团宽度问题转化为可处理的SAT问题。文章详细阐述了相关理论基础、推导构造方法以及编码策略,并通过实验验证了方法的有效性。同时,还提出了未来可能的研究方向,如优化编码方式、结合启发式搜索和并行计算等,以提升大规模图场景下的求解效率。原创 2025-08-02 12:18:22 · 1 阅读 · 0 评论 -
44、提升SAT求解器性能:Glucose改进与团宽计算新方法
本文介绍了对Glucose SAT求解器的多项改进,包括高效遍历含选择器子句、BCP优化和数据库简化,提升了求解性能,尤其在MUS提取方面表现优异。同时,提出了一种基于SAT的团宽计算新方法,通过问题重新表述和代表性编码,首次精确计算了多种小图的团宽,为图论研究提供了新工具。原创 2025-08-01 09:21:27 · 1 阅读 · 0 评论 -
43、基于乘积的消息传递启发式插值与增量 SAT 求解优化
本博客探讨了基于乘积的消息传递启发式插值方法在SAT求解中的应用,以及增量SAT求解的优化策略。重点介绍了通过间接结构插值(ISI)技术实现的L1和L2启发式,特别是ρσPMPi在手工构造和随机公式中的优越性能。此外,博客还分析了增量SAT求解的工作机制,讨论了假设管理和LBD评分的改进方法,并结合实验数据展示了Glucose与Minisat在实际应用中的表现差异及优化方向。原创 2025-07-31 14:34:29 · 1 阅读 · 0 评论 -
42、基于消息传递启发式的插值方法研究
本博文主要研究基于消息传递启发式的插值方法,以解决CNF公式的可满足性问题。文章从通用MID求解器genMID出发,逐步推导出L0、L1和L2层次的启发式方法。L0启发式包括Belief Propagation (BP)、Survey Propagation (SP)、Expectation Maximization BP Global (EMBPG)和Expectation Maximization SP Global (EMSPG)。通过间接结构插值(ISI),得到了L1启发式方法(如ρSPi、ρEMS原创 2025-07-30 14:05:34 · 0 阅读 · 0 评论 -
41、基于乘积的SAT消息传递启发式算法的插值研究
本文研究了基于乘积的消息传递(MP)启发式算法在布尔可满足性(SAT)问题中的应用,并提出了一种新的插值方法来提升算法的灵活性和鲁棒性。通过在收敛性和谨慎性两个维度上对经典MP算法(如BP、SP、EMBPG和EMSPG)进行插值,构建了通用的启发式算法ρσPMPi。实验表明,ρσPMPi在处理随机和精心设计的SAT公式时均表现出良好的性能,为SAT求解器的设计提供了新的思路。原创 2025-07-29 13:47:29 · 2 阅读 · 0 评论 -
40、加速MUS提取:假设因子化技术解析
本文探讨了通过假设因子化技术加速MUS(不可满足核心子集)提取的方法,重点介绍了包括 `analyzeFinal` 算法、学习子句数据库优化、以及新的子句最小化策略在内的核心算法。实验结果表明,使用缩写分解假设、优化学习子句数据库和改进子句最小化方法显著提高了 SAT 求解器的性能,减少了学习子句大小和内存消耗,同时提升了求解速度和解决实例数量。文章还分析了不同策略对性能的影响,并展望了未来在数据结构优化、算法改进和并行计算方向的进一步优化潜力。原创 2025-07-28 15:44:07 · 2 阅读 · 0 评论 -
39、量化布尔公式模型与假设提取优化技术
本文探讨了量化布尔公式(QBF)的完全等价模型及其与Skolem和Herbrand(反)模型的关系,并提出了一种针对增量SAT求解的假设提取优化技术。通过将存在量词变量映射为Skolem函数,结合引理和推论,构建了QBF的紧凑模型。在假设提取优化方面,通过分解学习子句中的假设文字并引入缩写文字,显著提高了MUS(最小不可满足集)提取的效率。实验结果显示,该技术有效减少了平均子句大小,缩短了运行时间,并改进了MUS提取的整体性能。文章还展望了未来研究方向,包括矩阵限制对模型的影响、递归计算与归结的关联以及技术原创 2025-07-27 09:50:09 · 1 阅读 · 0 评论 -
38、嵌套布尔函数作为量化布尔公式的模型
本文探讨了量化布尔公式(QBF)与嵌套布尔函数(NBF)之间的关系,提出了一种将QBF表示为NBF的方法,并通过迭代函数组合模拟了QDPLL算法。文章定义了完全等价模型的概念,并展示了其构造方法。此外,还研究了如何从完全等价模型中提取Skolem模型和Herbrand反模型,为QBF的可满足性问题提供了更高效的解决方案。最后,对未来的优化模型表示、算法改进和实际应用方向进行了展望。原创 2025-07-26 12:39:05 · 1 阅读 · 0 评论 -
37、量化最大可满足性:基于核心引导的方法
本文介绍了一种基于核心引导的方法来解决量化最大可满足性(QMaxSAT)问题,并将其应用于寻找最小不可满足子公式(SMUS)的具体问题中。通过改进的CEGAR框架和QMSU1算法,结合MCS枚举和预处理优化技术,提出了高效的求解策略。实验结果表明,该方法在多个基准测试中显著优于现有技术Digger,展示了其在量化约束优化问题中的潜力。原创 2025-07-25 13:58:13 · 1 阅读 · 0 评论 -
36、量化最大可满足性:一种基于核心引导的方法
本文提出了一种基于核心引导的量化最大可满足性(QMaxSAT)问题解决方法,并将其应用于计算最小不可满足子公式(SMUS)问题。QMaxSAT是QBF问题的优化形式,可以处理量化约束下的优化问题。文章介绍了QMaxSAT的基本概念、算法设计以及在SMUS问题中的建模和应用。实验结果表明,核心引导的QMSU1算法在求解时间和性能上优于当前最先进的Digger算法,验证了该方法的有效性。原创 2025-07-24 12:07:07 · 2 阅读 · 0 评论 -
35、利用 oPSAT 解决硬约束和软约束问题
本博客介绍了两种解决复杂约束满足和优化问题的方法:oPSAT 和核心引导方法。oPSAT 被应用于材料科学中的相场识别问题,通过结合硬约束和软约束建模,在效率上显著优于传统方法,尽管在准确性上略有损失。核心引导方法则用于解决量化 MaxSAT 问题,特别在计算最小不可满足子公式(SMUS)任务中表现出色,超越了现有工具和线性搜索方法。这些方法为处理实际应用中的复杂约束和优化问题提供了新的思路和有效工具。原创 2025-07-23 09:24:04 · 1 阅读 · 0 评论 -
34、使用 oPSAT 解决硬约束和软约束问题
本文介绍了 Optimized Probabilistic Satisfiability (oPSAT) 方法,用于解决包含硬约束和软约束的实际问题。该方法通过两个主要阶段:PSAT 问题求解和概率分布优化,找到满足硬约束且软约束违反次数方差最小的合理概率分布。文章详细阐述了 oPSAT 的理论基础、算法实现、复杂度分析以及在学生选课、组合材料发现等领域的应用。此外,还讨论了该方法的优势、挑战及未来发展方向,如算法优化、不确定性处理和跨领域应用。原创 2025-07-22 13:34:38 · 1 阅读 · 0 评论 -
33、优化布尔可满足性问题模型及解决软硬约束问题
本文介绍了一种基于Tseitin编码的布尔可满足性问题(SAT)实例的模型最小化方法,以及一种解决软硬约束问题的优化概率可满足性(oPSAT)方法。模型最小化通过结构剪枝、归一化和迭代最小化三个步骤,有效减小模型规模,提高求解效率。oPSAT方法结合基于SAT的推理、概率推理和线性规划,为处理硬约束与软约束相结合的实际问题提供了实用解决方案。实验结果和流程图展示了两种方法的优势和应用前景。原创 2025-07-21 09:41:20 · 1 阅读 · 0 评论 -
32、可编程逻辑详细布局与SAT实例模型最小化技术
本文探讨了可编程逻辑详细布局的约束满足方法与Tseitin编码SAT实例的模型最小化技术。通过引入未来成本子句、动态子句生成和动态基数子句,提高了SAT求解器在布局问题中的搜索效率并解决了可扩展性问题。实验表明,基于SAT的布局方法在频率和运行时间上优于传统模拟退火方法。同时,文章介绍了Tseitin编码的模型最小化技术,通过去除不必要的信息提升模型的简洁性和可解释性,并讨论了其在软件验证、模型检查和抽象细化等领域的应用。未来的研究方向包括使用SMT差异逻辑求解器处理时序约束问题以及进一步优化模型最小化算法原创 2025-07-20 12:03:08 · 1 阅读 · 0 评论 -
31、可编程逻辑详细布局的约束满足方法解析
本文系统解析了一种可编程逻辑详细布局的约束满足方法,重点解决布局重叠、局部可布线性和时序约束三大关键问题。通过合理定义布局变量和引脚排列变量,并结合静态时序分析与 SAT 编码技术,将复杂的时序问题转化为高效的布尔约束求解。同时,采用自定义的两阶段变量选择启发式方法,有效引导求解器找到更改较少的高质量布局方案。文章还从方法优势、实际应用考虑因素和未来发展方向进行了深入探讨,为可编程逻辑布局提供了全面的理论支持和实践指导。原创 2025-07-19 11:29:07 · 1 阅读 · 0 评论 -
30、自动化问题规约发现与可编程逻辑详细布局的研究
本研究探讨了自动化问题规约发现与可编程逻辑详细布局的约束满足方法。在规约发现方面,采用CEGAR框架,比较了不同SAT和BDD实现的性能,结果显示GlueMiniSat在硬实例上表现优异,而BDD实现能生成更易理解的规约。针对可编程逻辑详细布局问题,提出了一种基于SAT的布尔约束满足方法,通过时序约束的布尔编码、变量选择顺序优化、未来成本子句引导以及动态子句生成策略,克服了传统模拟退火方法的局限性。实验表明,基于SAT的布局器在运行时间和布局质量上均优于传统方法,尤其在处理大规模和复杂约束问题时表现出显著优原创 2025-07-18 15:28:54 · 1 阅读 · 0 评论 -
29、逻辑公式化简实验研究
本文研究了逻辑公式化简问题,探讨了如何通过扩展一阶逻辑来克服其局限性,并寻找逻辑公式之间的化简关系。文章介绍了固定化简轮廓的方法,并将其转化为QBF实例进行求解。实验比较了多种方法,包括QBF求解器、ASP方法和CEGAR方法,结果表明CEGAR方法在化简查找问题上表现优异。未来的研究方向包括定制QBF求解器策略、优化ASP方法的接地过程以及拓展CEGAR方法的应用。原创 2025-07-17 14:36:58 · 4 阅读 · 0 评论 -
28、基于社区划分的MaxSAT求解及自动规约查找实验
本博文探讨了基于社区划分的MaxSAT求解方法以及自动规约查找实验。在MaxSAT求解中,通过合理划分软子句可以显著提升求解器性能,尤其是在考虑公式结构的情况下。实验还比较了不同求解器(如SAT、QBF和ASP)在自动规约查找中的表现,并指出了优化方向。研究为提升求解效率和推动复杂度理论的应用提供了新思路。原创 2025-07-16 13:11:40 · 1 阅读 · 0 评论 -
27、基于社区划分的MaxSAT求解方法
本文提出了一种基于社区划分的MaxSAT求解方法,旨在通过识别更容易解决的子问题来提升基于不可满足性的MaxSAT求解器的性能。通过将软子句划分为多个分区,并利用图表示和模块化度量识别社区结构,该方法能够更有效地找到更小的不可满足子公式,从而提高求解效率。实验结果表明,基于社区的划分方法在多个基准测试中优于传统超图划分和随机划分方法,尤其是在工业类别部分MaxSAT实例上表现优异。原创 2025-07-15 11:51:17 · 1 阅读 · 0 评论 -
26、有效利用 MIP 求解器解决 MaxSAT 问题
本博客探讨了如何有效利用混合整数规划(MIP)求解器解决最大可满足性(MaxSAT)问题,重点改进了MaxHS算法的性能。文章提出了b-变量等价性的概念,以增强SAT和MIP求解器之间的信息传递,并引入了非核心约束的利用、约束最小化和预加载技术(如Eq-预加载、Imp-预加载和Imp+Rev-预加载),从而显著改善了CPLEX等MIP求解器的效率。此外,还介绍了不相交阶段和改进的实证评估结果,展示了新方法在解决MaxSAT问题上的优势。原创 2025-07-14 14:35:05 · 1 阅读 · 0 评论 -
25、利用混合整数规划求解器解决最大可满足性问题
本文探讨了利用混合整数规划(MIP)求解器解决最大可满足性(MaxSAT)问题的方法,重点分析了包括CPLEX在内的多个求解器的性能表现。研究通过广泛的实证评估发现,不同求解器在不同问题实例上具有独特优势,其中CPLEX作为MIP求解器在MaxSAT问题上表现出色。文章还提出了未来的研究方向,如求解器组合策略、新算法思想的挖掘以及提高MIP求解器的信息利用效率。原创 2025-07-13 14:47:36 · 1 阅读 · 0 评论 -
24、基于模块化引理提升的MaxSMT求解方法及MaxSAT求解评估
本文探讨了基于模块化引理提升(LL方法)的MaxSMT求解技术,并评估了MaxSAT求解器的性能。LL方法通过结合SMT和MaxSAT求解器,提供了一种新颖且高效的MaxSMT求解途径。实验结果表明,LL方法在多个测试中表现优异,尤其在加权组中具有竞争力。此外,研究还评估了混合整数规划求解器CPLEX在MaxSAT问题中的有效性,并提出了改进的混合求解方法。未来研究方向包括定制化求解器开发、交错求解策略优化以及多方法融合创新,以进一步提升求解效率和适用性。原创 2025-07-12 12:02:56 · 1 阅读 · 0 评论 -
23、最大可满足性模理论的模块化方法:原理、算法与优化
本文探讨了最大可满足性模理论(MaxSMT)的模块化求解方法,详细介绍了SMT和MaxSAT的基础概念及其核心原理,并提出了一种新颖的模块化MaxSMT算法。该算法通过SMT求解器和MaxSAT求解器的协同工作,以引理提升的方式逐步排除不可满足的真值赋值,最终找到最大权重的软子句集。同时,文章还讨论了多种优化方法,如MaxSAT的增量性与SMT调用的重用,提升了算法的执行效率。通过与现有相关工作的对比,展示了该算法在处理纯布尔公式和排除软子句方面的高效性与独特优势。整体研究为逻辑和约束求解领域的实际问题提供原创 2025-07-11 12:03:10 · 1 阅读 · 0 评论 -
22、并行MUS提取与模块化MaxSAT模理论方法
本博客主要探讨了并行MUS提取算法与模块化MaxSAT模理论方法。在并行MUS提取方面,本文提出了一种改进的算法,其在通信和子句过滤方面优于已有的TarmoMUS方法,并通过实验验证了其在可扩展性和性能上的优势。此外,博客还介绍了一种新颖的模块化方法(LL方法)用于解决MaxSMT问题,该方法结合了SMT和MaxSAT求解器的优点,具有理论独立性、易于实现和可扩展性强的特点。实验表明,该方法在多个关键性能指标上表现优异,并已在射频分配、形式验证等领域得到实际应用。未来的研究将聚焦于进一步优化算法的多核扩展性原创 2025-07-10 16:28:24 · 1 阅读 · 0 评论 -
21、并行MUS提取算法解析与优化
本文深入解析了并行MUS(Minimal Unsatisfiable Subset)提取算法的设计与优化,重点介绍了基于假设的增量SAT求解方法及其在并行MUS提取中的应用。文章详细分析了主线程与工作线程的协作机制、不同算法配置(如同步/异步执行、相同/不同子句分配)的优缺点,以及通信优化策略。此外,还讨论了算法的正确性证明、可扩展性分析及未来研究方向,包括更高效的通信机制和自适应配置选择。通过基于核心的调度策略,算法能够有效减少工作重复,提高MUS提取效率。原创 2025-07-09 13:29:56 · 1 阅读 · 0 评论 -
20、并发子句强化与并行MUS提取技术解析
本文深入探讨了并发子句强化与并行MUS提取技术在SAT求解中的应用与优化。通过分析求解器-化简器架构的性能提升效果以及并行MUS提取的关键技术,展示了这两种方法在不可满足基准测试和工业相关实例中的显著优势。同时,文章比较了两种技术的共性与差异,并提出了未来的发展方向与潜在结合点,为研究人员和实践者提供了有价值的参考。原创 2025-07-08 10:37:11 · 23 阅读 · 0 评论