- 博客(27)
- 收藏
- 关注
原创 11-1 浅层神经网络及计算前向传播
之前看了单神经元神经网络,就是这个因为神经网络太简单,所以识别率不高。这个唯一神经元,负责执行了如下运算通过x,w,b计算得到z,然后由z得到a,a即预测结果,通过a和真是标签y构建损失函数L计算损失。同时反向传播,计算w和b关于损失函数的偏导数,梯度下降,然后前向、反向……不停优化。这里看下稍复杂一点的神经网络----浅层神经网络。对于多神经元神经网络,流程一样,即重复单神经元的流程。这里是一个多神经元神经网络拆分下即:(三个加在一起了)
2025-07-23 11:00:00
1245
原创 10 第一个人工智能程序
deepseek了一下,可能的原因有很多,其中有一个说因为模型处于初步优化阶段,预测结果全都偏向某一类(如这里示例的0或1),此时损失下降仅表示模型在调整概率输出(如从0.5变0.6),但未跨越决策边界(如0.5阈值),因此准确率不变。大佬这里用训练数据集、测试数据集进行了预测,可以看到训练图片预测准确率99%,非常高!打印一下调用后的值,输入有12288个特征,所以对应12288个权重,这里只看前五个。训练神经网络需要数据,需要输入,所以加载数据,用训练数据进行训练,测试数据进行验证。
2025-07-22 11:00:00
777
原创 9 数据清理、逻辑回归与分类阈值、静态训练与动态训练
水果店卖水果要把坏的扔掉,剩下的分好的,一般的,低价处理的出售。同样,数据集的质量也很重要,所以需要数据清理缩放特征值是常用数据清理手段之一它是指将浮点特征值从自然范围(如100到900)转换为标准范围(如0到1或-1到1)如果某个特征集只包含一个特征,则缩放可以提供的好处几乎没有但如果特征及包含多个特征,缩放特征可以带来以下优势:①帮助梯度下降法更快速地收敛②帮助避免‘NaN陷阱’。
2025-07-13 11:00:00
369
原创 8 特征工程
为了避免直接映射的漏洞,可以为每个分类特征创建一个二元向量,该向量的长度=词汇表中的元素数。假设数据集中有100万个不同街道名称,如果直接创建一个包含100万个元素的二元向量,其中只有一或二个元素为true,非常低效。比如street_name表示街道名称的分类特征,值可能包括{‘中山路’,‘学院路’,‘知春路’}一个特征向量,其中大多数值都为0或空(如某向量中1个1,一百万个0),则该向量属于稀疏向量,反之就是密集向量。不过这种直接映射有漏洞,如果有的屋子位于两条街道的拐角处,就不好表示了。
2025-07-12 11:00:00
613
原创 6 如何向量化人工智能算法
所以这里temp=所有特征*权重的和,b是什么,之前提到了,b是阈值,所以temp+b也就是z也就是逻辑回归函数。每一行对应各个样本的同一个位置的特征,即第一行对应所有样本的第一个特征,第二行对应所有样本的第二个特征。所以上边的逻辑就是,批量算出了逻辑回归结果,然后批量激活,z(i)变Z即最终应用广播化技术得出一个A向量,向量中每个元素对应一个样本的小a(i)这里是大写X,大写X是一个n*m的矩阵,w是n个输入特征的权重,即一个1*m的行向量。而dZ.t是一个列向量,里面的一个元素就是一个样本对应的dz。
2025-07-10 11:00:00
1465
原创 5 矩阵、向量、向量化
矩阵是多行多列元素组成的一个集合。一个m*n的矩阵就有m行n列个元素。下图为一个2*3的矩阵很简单,两行,三列,第一行有1,2,3,第一列有1,4如果一个矩阵只有一列,那么就是一个列向量;如果只有一行,就是行向量某种角度说,矩阵是由多个向量组成的。
2025-07-09 11:00:00
267
1
原创 4 如何计算逻辑回归的偏导数
逻辑回归之前提过,船长大佬这里补充说明了:逻辑回归(Logistic Regression)虽然被称为回归,但实际上是分类模型,并常用于二分类。Logistic回归属于广义线性模型。这类模型形式基本上都差不多,都具有w'x+b的形式,其中w和b是待求参数。Logistic回归可以是二分类的,也可以是多分类的,但二分类更常用,更容易解释,所以实际中常用的就是二分类的Logistic回归。回顾一下:在逻辑回归的前向传播过程中,第一步算z第二步算y^,也是a第三步算L假设只有两个特征x1和x2。W上面的T表示矩阵
2025-07-08 11:00:00
382
原创 3 什么是计算图?
通常我们会将最终函数(这里是J)的偏导数的符号进行简化,例如dJ/da可以写成da,dJ/dU可写成dU,所以看到db记得是dJ/db,而不是dU/db。假设U+1=7,J=3V=3*(5+7)=36,dJ/dU=dJ/dV*dV/dU=3*1=3。同理,计算V关于U的偏导数,dV/dU。J关于a的偏导数=dJ/da=dJ/dV*dV/da=3*(1/1)=3。J关于c的偏导数=dJ/dc=dJ/dU*dU/dc=3*(3/1)=9。同样,J关于b的偏导数=dJ/db=dJ/dU*dU/db=3*2=6。
2025-07-07 11:28:41
670
原创 2 如何判断预测是否准确?
神经网络自己怎么判断预测结果是否准确?损失函数!就是干这个的。回顾下逻辑回归+激活函数i角标指代某一个训练样本。例是对于训练样本的预测结果,用什么损失函数判断预测的精准度高不高?用下面这个公式作为损失函数,预测结果y^与实际结果y的差的平方乘1/2。但在实践中人们通常不用它,具体原因后面会说实践中用的损失函数是这个:上面是对单个训练样本定义的损失函数。下面的公式是衡量算法对整个训练集的预测精度,即对每个样本的“损失”累加然后求平均值。这种针对整个训练集的损失函数称为成本函数。
2025-07-04 14:30:18
876
原创 1 什么是神经网络?
人类大脑神经元细胞的树突会接收外部多个强度不同的刺激,并在神经元细胞体内进行处理,然后将其转化为一个输出结果。(就是多个输入->处理->输出)受到人类大脑结构启发而创造的,由多个神经元连接构成的网络。训练深度神经网络的过程叫做深度学习。这里就涉及到大家所说的“黑盒”了。什么叫神经网络复杂呢?即深度神经网络,深度也指层数多。大脑结构简单=智商低,所以神经网络越复杂越强大。x即输入,圈圈即神经元,w即权重,后边会详解。
2025-07-03 14:14:57
215
1
原创 每日一练-SQL题184
学到了 where xxxxx in xxxx 原来可以写好几个字段。先找到每个部门最高的工资,然后再找部门和薪资都等于查找结果的数据。
2023-07-11 18:36:52
106
1
原创 每日一练-SQL题180
连续出现三次,且值相同。假设三张表:a,b,c。即a.Id=b.Id-1 and b.Id=c.Id-1 and a.Num=b.Num and b.Num=c.Num。
2023-07-10 18:30:35
136
1
原创 每日一练-SQL题183
这里要找从不订购的客户,即客户从未在Orders表出现,即Customers表左联Orders表,找出Orders表中Id is null的数据。
2023-07-09 17:38:54
117
1
原创 每日一练-SQL题182
怎么找出现了重复了的尼,我们首先需要知道email出现了几次,怎么知道出现了几次呢?对的group by然后count然后拿到count>1的数据。
2023-07-08 19:17:24
129
原创 每日一练-SQL题178
说明:例如学生排名,使用这个函数,成绩相同的两名是并列,下一位同学空出所占的名次。即:1 2 3 4 5 6。作用:查出指定条件后的进行排名,条件相同排名也不相同,排名间断不连续。作用:查出指定条件后的进行排名,条件相同排名也不相同,排名间断不连续。作用:查出指定条件后的进行排名,条件相同排名相同,排名间断不连续。作用:查出指定条件后的进行排名,条件相同排名相同,排名间断不连续。作用:查出指定条件后的进行排名,条件相同排名相同,排名间断连续。作用:查出指定条件后的进行排名,条件相同排名相同,排名间断连续。
2023-07-07 16:21:48
104
1
原创 每日一练-SQL题176
那么针对于这种题,我们可以尝试采取上述解题思路:递减排序并去重->找最大->找第n个->判空。上面这种题拓展一下,可以用来解决“找第n高的xxxx”这类题。接下来,我们一个一个的解。
2023-07-06 17:42:19
106
1
原创 Axure 交互学习1 基础页面跳转、鼠标悬停样式
这是一个非常简单基础的页面跳转1.首先创建两个页面 page1和page2page1放一个按钮 page2放一个按钮2.为page1的按钮添加交互动作1⃣️选中按钮2⃣️在交互中选择 新建交互->单击时->打开链接->page2->确认3.为page2的按钮添加交互动作及交互样式1⃣️选中按钮2⃣️在交互-形状交互处 选择 新建交互->单击时->打开链接->page1->确认3⃣️在交互-交互样式处 ...
2022-02-16 22:37:06
2385
原创 三阶魔方还原公式
首先感谢大佬的教程:1.https://sp0.baidu.com/5bgWsjip0QIZ8tyhnq/wqs/detail?s=TA6qPHfzPjchILKY5HchUMfqnauET1YzFhFL5HfhTv-b5H6krjfvuW79nHN9rj6duWnhmv3qmh7GuZNLmgKxILnhpg0qP1fkn101n1nzFMwzmyw-pyfqnHbhTh78p1YsFM...
2018-08-20 12:08:19
143385
3
原创 后缀表达式、前缀表达式
后缀表达式和前缀表达式是什么呢? 前缀表达式:不包括括号的算术表达式,将运算符写在前面,操作数写在后面的表达式。为纪念其发明者波兰数学家Jan Lukasiewcz,也称“波兰式”。 后缀表达式:不包括括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。也称“逆波兰式” 举个栗子:
2017-10-18 23:10:32
2091
1
原创 Linux基本操作、命令
/bin 二进制可执行程序/boot 系统内核,与启动有关文件/dev 设备文件/home 所有普通用户的家目录/lib 系统存放库文件的地点/mnt 临时挂载点/proce 进程的属性信息,放在内存中,断电就消失/root 管理员的家目录/selinux 安全文件/tm
2017-10-18 16:47:28
367
原创 对递归的理解
递归什么是递归呢?百度上说:递归,就是在运行的过程中调用自己。构成递归需具备的条件:函数嵌套调用过程示例1. 子问题须与原始问题为同样的事,且更为简单;2. 不能无限制地调用本身,须有个出口,化简为非递归状况处理。 恩,对于1我的理解就是你要解的问题可以调用你所写的函数。 对于2,其实就是一个边界值,限制一个条件结束程序。 下面举一个简单的例子:第一...
2017-08-13 18:48:02
513
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人