Common Subsequence
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x
ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input abcfbc abfcab programming contest abcd mnp Sample Output 4 2 0 Source |
最长公共子序列问题!!!(LCS)
设两个序列X = {X1, X2, X3, X4, ........ Xm} 和 Y = {Y1, Y2 , Y3, Y4, .......Yn
} 的一个最长公共子序列Z = {Z1, Z2 .......Zk}则
(1)若Xm = Yn 则Zk = Xm = Yn 且Z(k-1) 是X(m-1)和Y(n-1)的最长公共子序列。
(2)若Xm 不等于 Yn,且 Zk不等于Xm ,则Z是X(m-1)和Y的最长公共子序列。
(3)若Xm 不等于 Yn,且 Zk不等于Yn ,则Z是X和Y(n-1)的最长公共子序列。
又(2)(3)可知,当Xm 不等于 Yn时,找出X(m-1)和Y的最长公共子序列,一个X和Y(n-1)的最长公共子序列,两个最长公共子序列较长的那个就是X和Y的最长公共子序列!
代码如下
#include<stdio.h>
#include<string.h>
int dp[1000][1000];
int main()
{
int i, j, m, n;
char a[1000], b[1000];
while(scanf("%s%s", a, b) != EOF)
{
m = strlen(a);
n = strlen(b);
memset(dp, 0, sizeof(dp));
for(i = 1; i <= m; i++)
for(j = 1; j <= n; j++)
{
if(a[i - 1] == b[j - 1])
dp[i][j] = dp[i - 1][j - 1] + 1;
else if(dp[i-1][j] >= dp[i][j-1])
dp[i][j] = dp[i-1][j];
else
dp[i][j] = dp[i][j-1];
}
printf("%d\n",dp[m][n]);
}
return 0;
}
dp[i][j] 其中i代表a数组中i个数据在b数据中前j个数的最长公共子序列!!!!!