dp第一步!!!!最长公共子序列 POJ 1458

本文深入探讨了最长公共子序列问题的解决方法,通过详细解释算法原理并提供代码实现,帮助读者理解如何找到两个序列之间的最长公共子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 42968 Accepted: 17386

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0

Source


最长公共子序列问题!!!(LCS)

设两个序列X = {X1,  X2, X3,  X4, ........ Xm} 和 Y = {Y1, Y2 , Y3, Y4, .......Yn } 的一个最长公共子序列Z = {Z1, Z2 .......Zk}则
(1)若Xm = Yn 则Zk = Xm = Yn 且Z(k-1) 是X(m-1)和Y(n-1)的最长公共子序列。
(2)若Xm 不等于 Yn,且 Zk不等于Xm ,则Z是X(m-1)和Y的最长公共子序列。
(3)若Xm 不等于 Yn,且 Zk不等于Yn ,则Z是X和Y(n-1)的最长公共子序列。
又(2)(3)可知,当Xm 不等于 Yn时,找出X(m-1)和Y的最长公共子序列,一个X和Y(n-1)的最长公共子序列,两个最长公共子序列较长的那个就是X和Y的最长公共子序列!
代码如下
#include<stdio.h>
#include<string.h>
int dp[1000][1000];
int main()
{
    int i, j, m, n;
    char a[1000], b[1000];
    while(scanf("%s%s", a, b) != EOF)
    {
        m = strlen(a);
        n = strlen(b);
        memset(dp, 0, sizeof(dp));
        for(i = 1; i <= m; i++)
            for(j = 1; j <= n; j++)
            {
                if(a[i - 1] == b[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else if(dp[i-1][j] >= dp[i][j-1])
                    dp[i][j] = dp[i-1][j];
                else
                    dp[i][j] = dp[i][j-1];
            }
        printf("%d\n",dp[m][n]);
    }
    return 0;
}
dp[i][j] 其中i代表a数组中i个数据在b数据中前j个数的最长公共子序列!!!!!



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值