word2vec-python对词进行相似度计算1

初学NLP,尝试word2vec模型

第一次学这种,查阅了很多的博客,克服了些些问题,记录一下第一次探索的历程和相关代码,文中借鉴多篇优秀的文章,连接会在文章中给出。

1.实验样本

在我最开始寻找实验头绪的时候,了解做这个需要实验样本,但是大部分博主没有提供他的实验样本,所以我在网络上下载了《倚天屠龙记》的文本。
在下面这篇博客中我了解到可以运用文本进行分割自己生成词的实验样本,以及如何运用jieba的包。
借鉴的博客1
运用jieba包切割词的相关代码:

import jieba.analyse
import codecs

f=codecs.open('D:/NLP/A.txt','r',encoding="utf8")
target = codecs.open("D:/NLP/B.txt", 'w',encoding="utf8")

print('open files')
line_num=1
line = f.readline()

#循环遍历每一行,并对这一行进行分词操作
#如果
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值