GPU显存不足,报错:RuntimeError: CUDA out of memory.

本文介绍了一个在使用PyTorch框架训练ResNet50模型时遇到的显存溢出问题,并提供了解决方案。通过使用with torch.no_grad()语句,可以有效减少GPU显存占用,避免因存储过多中间数据导致的显存不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔者近日利用pytorch框架对图像采用Resnet50模型提取特征的时候,利用到了GPU,发现报错如下:

RuntimeError: CUDA out of memory. Tried to allocate 858.00 MiB (GPU 3; 10.92 GiB total capacity; 10.10 GiB already allocated; 150.69 MiB free; 10.13 GiB reserved in total by PyTorch)

该程序运行所用GPU为1080TI板子,有大约11GB的显存,然而简单的Resnet50模型居然搞的显存不足。经过详细调试发现,需要使用 with torch.no_grad(): 语句,否则会因为存储过多中间数据而导致显存不足。

model=model.to(device)
with torch.no_grad():
     img = Image.open(imgFile)
     img = transform(img)
     x = Variable(torch.unsqueeze(img, dim=0).float(), requires_grad=False)
     x = x.to(device)
     y = model(x).cpu()

尤其是在y=model(x).cpu()的时候,很容易出错。希望能对大家有所帮助,谢谢。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值