经典逻辑与博弈论中的关键概念解析
1. 经典逻辑基础
经典逻辑是众多领域的基础理论,我们先从命题演算开始介绍。给定一组命题符号集合 (P),命题演算中的句子集合 (L) 是包含 (P) 的最小集合,并且满足若 (\phi, \psi \in L),则 (\neg\phi \in L) 且 (\phi \land \psi \in L)。其他连接词如 (\vee)、(\to) 和 (\equiv) 都可以用 (\land) 和 (\neg) 来定义。
连接词 | 定义方式 |
---|---|
(\vee) | 可用 (\land) 和 (\neg) 定义 |
(\to) | 可用 (\land) 和 (\neg) 定义 |
(\equiv) | 可用 (\land) 和 (\neg) 定义 |
命题解释(或模型)是集合 (M \subset P),即真命题的子集。模型和句子之间的满足关系 (\vDash) 递归定义如下:
- 对于任意 (p \in P),(M \vDash p) 当且仅当 (p \in M)。
- (M \vDash \phi \land \psi) 当且仅当 (M \vDash \phi) 且 (M \vDash \psi)。
- (M \vDash