57、经典逻辑与博弈论中的关键概念解析

经典逻辑与博弈论中的关键概念解析

1. 经典逻辑基础

经典逻辑是众多领域的基础理论,我们先从命题演算开始介绍。给定一组命题符号集合 (P),命题演算中的句子集合 (L) 是包含 (P) 的最小集合,并且满足若 (\phi, \psi \in L),则 (\neg\phi \in L) 且 (\phi \land \psi \in L)。其他连接词如 (\vee)、(\to) 和 (\equiv) 都可以用 (\land) 和 (\neg) 来定义。

连接词 定义方式
(\vee) 可用 (\land) 和 (\neg) 定义
(\to) 可用 (\land) 和 (\neg) 定义
(\equiv) 可用 (\land) 和 (\neg) 定义

命题解释(或模型)是集合 (M \subset P),即真命题的子集。模型和句子之间的满足关系 (\vDash) 递归定义如下:
- 对于任意 (p \in P),(M \vDash p) 当且仅当 (p \in M)。
- (M \vDash \phi \land \psi) 当且仅当 (M \vDash \phi) 且 (M \vDash \psi)。
- (M \vDash

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值