机器人决策理论规划与不确定性感知导航
1. 切线虫算法与竞争比率
1.1 切线虫算法
切线虫算法是一种通过设置距离传感器深度限制而形成的单参数算法族。随着最大深度的减小,机器人的视野会变得更短浅,性能也会随之下降。机器人行驶的距离不超过以下公式计算的值:
[d + \sum_{i=1}^{M}p_i + \sum_{i=1}^{M}p_im_i]
其中,(m_i) 是第 (i) 个障碍物的局部极小值数量,(d) 是到目标的初始距离。该界限是针对 (M) 个障碍物而言的,这些障碍物假定与以目标为中心、半径为 (d) 的圆盘相交(其他障碍物可忽略)。还有一种切线虫算法的变体,即楔形虫算法,它是为视野有限的行星漫游车开发的。
1.2 竞争比率
竞争比率是评估利用不同信息的算法的一种流行方式,其核心思想是将在线算法与接收更多信息的算法进行竞争。具体定义为:
[
\max_{e\in E} \frac{\text{执行事先不知道 } e \text{ 的计划的成本}}{\text{执行事先知道 } e \text{ 的计划的成本}}
]
这里的最大值是在所有 (e \in E) 上取得的,(E) 通常是一个无限集。在导航问题中,竞争比率可以通过比较最优距离和在线算法执行过程中机器人行驶的总距离来计算。然而,由于 (E) 是无限的,许多计划无法产生有限的竞争比率,例如一些优雅的虫算法。
1.3 迷失奶牛问题
迷失奶牛问题很好地阐释了竞争比率分析及其相关问题。一只短视的奶牛沿着无限长的围栏行走,想要找到大门,但不知道大门的方向。
- 如果知道大门距离不超