- 博客(790)
- 资源 (10)
- 收藏
- 关注
原创 基于DeepSeek的美妆Agent开发
作为一名极具责任感的现代青年,在约会时精心雕琢着装风格,绝非仅仅为了展现个人的时尚品位,它更深层次的意义在于,这是对约会对象细致入微的尊重与体贴。然而,如何精准拿捏着装风格的分寸,使之既符合自身气质,又能契合约会氛围,无疑是一大挑战。为此,我们将巧妙借助外部资源,运用高效且精准的信息检索技术,广泛搜集关键数据,同时融合个人的审美见解与缜密的逻辑分析能力,从而打造出令人眼前一亮的约会装扮。自动化获取天气数据如图5-3所示。图5-3 自动化获取天气数据。
2025-07-08 10:59:03
555
原创 从推理角度详解MLA注意力模型与代码实现
为了进一步优化这一流程,未来的研究可以探索更高效的存储解决方案,例如利用更快的存储介质或者优化数据访问模式,以减少访存延迟,从而进一步提高KV Cache机制的整体性能。我们在前面章节实现了经典生成模型,从推理输出上来看,在推理阶段,由于模型由多层Transformers堆叠而成,因此主要的计算负担落在了注意力模型内部,涉及MHA和前馈神经网络(或MoE)等核心操作。在本节中,我们将从缓存优化的独特视角出发,深入剖析注意力模型在推理阶段的缓存占用情况,并通过严谨的量化计算,为读者呈现清晰的数据对比和分析。
2025-07-08 10:52:49
519
原创 扣子开发自动生成PPT的智能办公助手
本本将介绍如何借助扣子平台强大的工作流功能,结合官方PPT插件,实现从关键词输入到PPT自动生成的全流程,帮助用户突破传统PPT制作的效率瓶颈,提升办公效率。用户输入经过大纲生成、模板匹配和内容生成3个主要处理环节,最终由导出模块生成可下载的PPT文件。这种模块化设计既保证了处理流程的清晰性,也便于后期功能的扩展。自动生成PPT主要使用了iSlide插件。至此,我们实现了从关键词输入到PPT自动生成的全过程。完成工作流的配置后,我们需要测试一下。下载下来,打开PPT看看如何。
2025-07-07 08:58:35
161
原创 DeepSeek工具使用详解
当我们回到DeepSeek调用工具的问题时,面临的挑战是如何让这个大模型也具备这样的决策能力,即根据给定的任务,它能知道应当调用哪些工具。在这份文档中,我们详细描述每个工具API的功能、参数以及返回值,告诉大语言模型在何时、何地可以调用这些API,并且当API被调用后,返回相应的API的JSON对象。具体来看,在代码的执行部分,用户提出了一个关于上海天气的问题。因此,通过对工具API中的描述进行甄别,从而判定使用哪一个最合适的工具,加上合理的引导和训练,可以使大模型更加智能化,从而完成对工具的使用。
2025-07-07 08:13:49
957
原创 基于DeepSeek的体重管理Agent开发
在快节奏的现代生活中,人们不仅要在工作与约会之间找到平衡,更需要时刻关注并维护彼此之间的交互。通过我们前期的技术探索与实践过程,我们成功构建了一种基于图形用户界面(GUI)的自动化智能体,该智能体能够实现对浏览器操作的全流程精准复刻。这一方案主要依赖于先进的图像识别技术和控件操作逻辑,其显著优势在于无须对现有软件界面进行任何改造,即可完美模拟人工操作流程,展现出极高的灵活性与适应性。然而,随着应用场景的不断拓展,特别是当面对高频次、标准化的数据交互需求时,这种“像素级模拟”方案逐渐显现出其效率上的局限性。
2025-07-05 18:11:35
829
原创 扣子开发旅游规划助手多智能体
景点推荐Agent的主要作用是根据游客的兴趣和需求,推荐合适的旅游目的地和景点。在旅游助手场景中,我们将设计三个智能体,分别负责景点推荐、路线规划和食宿安排,这三个智能体协作,共同完成旅游任务的安排。在打开的“创建智能体”窗口中配置智能体的基础信息,智能体名称填写“旅游助手”,智能体功能介绍填写“通过多智能体协作完成旅游的所有规划”。在经典推荐Agent配置窗口中,单击“经典推荐”右边的按钮,在弹出的快捷菜单中单击“切换节点设置”,可以进入“切换节点设置”窗口,设置Agent的跳转。
2025-07-05 13:55:28
497
原创 减少空间占用的自回归模型代码实现与详解
在上一节()中,我们详细探讨了自回归模型的计算负担,以及如何通过缓存优化技术来减轻这种负担。显然,在模型计算过程中,若使用完整序列,会显著增加计算量。而缓存技术的引入,正是为了解决这个问题。接下来,我们将通过实现带有缓存功能的经典自回归模型——GPT-2,来具体展示缓存优化带来的效果。我们将编写GPT-2模型的完整代码,并在使用和未使用缓存技术的情况下,分别进行序列生成测试。通过对比实验,我们可以直观地看到缓存技术在减少内存占用和提高计算效率方面的显著效果。
2025-07-04 11:09:12
839
原创 自回归生成模型中的推理加速详解
在上一节中,我们详细讲解了自回归生成模型的原理与训练过程,揭示了训练环节的核心重要性。然而,在生成模型的全面实践中,更加关键的一步在于如何精妙地运用这些训练成熟的模型去执行实际的推理任务。而在此过程中,一个至关重要的考量因素,便是如何高效利用现有的设备和资源,以最优化的方式进行模型推理。在本节中,我们将聚焦于生成模型中的推理加速内容,深入探讨如何通过技术手段提升模型推理的速度与效率。
2025-07-03 19:05:15
2056
原创 自回归生成模型中的资源计算
在自回归生成过程中,每一次推理步骤仅生成一个token,随后将这个新生成的token拼接到当前的输入序列末尾。紧接着,基于更新后的序列,模型进行下一次推理,如此循环往复,直至生成特定的结束标志(如eos,即end of sentence)或达到预设的最大生成长度。这种逐步生成的方式使得自回归模型能够灵活地处理长文本生成任务。通过逐步构建序列,模型能够考虑之前生成的上下文信息,从而生成更加连贯和符合逻辑的文本。然而,随着生成序列的不断增长,计算量和内存消耗也会相应增加,这对模型的推理效率和性能提出了挑战。
2025-07-03 19:00:34
884
原创 多模态DeepSeek大模型的本地化部署
在本例中,我们定义了model_path = "deepseek-ai/deepseek-vl2-tiny",即使用一个迷你版本的DeepSeek-VL2进行模型设计,由于模型的权重和编码器需要从网上下载,对于下载有困难的读者,我们在配套代码库中准备了下载好的权重与文件,读者可以直接更改model_path地址到本地。对于flash_attn的安装,Windows版本的flash_attn无法直接安装,读者可以使用本书配套代码库中作者编译好的flash_attn安装,从而完成本地化的部署。
2025-07-02 16:52:10
292
原创 基于在线DeepSeek大模型的离线蒸馏
在上一个博文中,我们讲解了模型蒸馏的基本概念,了解到对大模型数据进行蒸馏并提供给学生模型进行训练,是一个很好的解决办法。本节将演示从数据获取开始,通过在线DeepSeek蒸馏获得一整套完整的mini蒸馏集的过程。
2025-07-02 16:44:57
780
原创 在线MCP服务的连接和使用
MCP作为一种具有开创性的开放协议,其核心目标在于标准化人工智能模型与外部数据源、工具之间的交互方式。在当今复杂多变的人工智能应用环境中,模型需要与各种不同类型的数据源和工具进行交互,以实现更加智能、高效的任务处理。通过MCP,大模型可以轻松地与各种专业工具进行连接和通信,无须进行复杂的接口开发和数据转换,从而大大提高了开发效率和应用效果。同时,MCP的标准化特性也保证了不同模型、不同工具之间的兼容性和互操作性,为人工智能技术的广泛应用和深入发展奠定了坚实的基础。
2025-07-01 14:18:07
243
原创 什么是大模型蒸馏
在自然语言处理领域,LLM因其强大的语言理解和生成能力而备受关注。然而,由于参数规模较大,商业LLM的使用成本较高,而且数据隐私和安全问题也难以解决。相比之下,开源LLM模型虽然参数规模较小,但性能较弱。知识蒸馏(Knowledge Distillation,KD)技术为解决这个问题提供了新思路。知识蒸馏利用商业LLM的高性能,将其知识“蒸馏”到更小的开源模型中,从而实现高性能和低成本。
2025-07-01 12:28:29
448
原创 3.3节 开发自定义插件案例:查询股票价格
3.3节 开发自定义插件案例,自动生成的代码运行会出错,需要改为作者提供的代码(参看书中的图片),操作起来不方便,可以直接到本文后面复制这段代码。在预览与调试窗口的对话框中输入“MSFT 股票价格是多少?
2025-06-29 17:42:02
297
原创 大模型在线MCP服务器搭建
我们通过MCP官方提供的配置可以完成MCP服务器的搭建,但是对于新手来说,需要了解和掌握服务器的配置,并对文件的命名与代码的编写要求有一定的了解。为了方便使用MCP在线服务器的搭建,我们可以使用现成的Python库来完成MCP服务器的搭建。程序代码较为简单,整体逻辑就是首先定义服务器的名称与服务器描述,之后将不同的工具函数进行注册,并提供访问地址和端口,最后将MCP服务器挂载和启动。可以看到此时我们已经正常启动了MCP服务,后续就可以继续完成MCP客户端的编写了。图6-4 MCP服务器的启动。
2025-06-26 18:27:32
363
原创 大模型MCP协议详解
在这些情况下,仅仅依靠大模型自身的能力是远远不够的,我们额外需要一种能够使得大模型直接、高效调用这些专业工具的方法,而MCP正是为解决这一问题而诞生的。传统的Function Calling往往呈现出碎片化的特点,不同的AI模型和应用可能采用不同的调用方式,这使得开发者在面对不同的项目时,需要不断地重新学习和适应,极大地增加了开发的难度和成本。同时,MCP凭借其标准化的交互协议、核心组件、动态发现机制等优势,解决了传统AI应用中的诸多问题,为AI技术的发展和应用提供了强大的支持。
2025-06-26 18:23:07
1047
原创 DeepSeek-Reasoner推理模型示例
值得注意的是,为了保持对话的连贯性和简洁性,在下一轮对话中,之前轮次输出的思维链内容并不会被直接拼接到上下文中。这一模型以其高效和稳定的性能,为我们的交流提供了坚实的基础。然而,技术的探索永无止境,DeepSeek团队在此基础上更进一步,推出了一种创新的输出方案—— DeepSeek-Reasoner推理模型,为我们与大模型的对话体验增添了新的维度。从上面结果可以看到,相对于原有的输出,在问题的解答上推理模型使用了更多的推理过程与解答,并且对结果进行更细密的分析,从而获得对逻辑和推理步骤进行说明的结果。
2025-06-25 17:12:16
516
原创 登录扣子开发平台的方法
点击右上角“登录扣子”按钮,打开登录页面,注册或者登录网站。扣子平台又改版了,目前开发平台隐藏的比较深,本文引导新注册用户访问开发平台。点击右上角的“扣子空间”。再点击“开发平台”。再点击“快速开始”。
2025-06-25 15:11:30
187
原创 通过Prompt提示构建思维链
例如,在处理一道复杂的数学证明题时,它能够识别出题目中的已知条件、未知结论以及它们之间的逻辑关系,将证明过程拆解为一系列合理的推理步骤。对于不同类型的问题,我们只需要根据问题的特点,设计相应的步骤提示,就可以引导模型进行有效的求解。例如,在处理跨领域的复杂问题时,它能够融合不同领域的知识,提出新颖的解决方案,为模型的推理能力注入新的活力。基于这种思维链的推理过程,DeepSeek提出了一种新的推理模型——DeepSeek-Reasoner,其作用犹如一把精准的手术刀,在人工智能的复杂领域中发挥着关键作用。
2025-06-24 18:43:54
1029
原创 3.5节 卡片制作实战案例插件问题的暂时解决方法
卡片制作实战案例:知乎热点排行榜,中使用的这个插件不好用,不能返回结果。我们可以换一个插件来做测试。我们做到这一步的的时候,可以查询并添加“头条新闻”插件来代替书中使用的插件。头条的插件应该比较可靠。绑定卡片后,设置参数也比较简单,对应下图即可。
2025-06-24 10:14:47
191
原创 DeepSeek中的提示库及其用法示例
对于初学者而言,库中配备了详细的基础提示词示例和清晰的使用说明,就像是一位耐心的导师,手把手地引导他们熟悉DeepSeek模型的基本操作和提示词的使用方法,帮助他们快速上手,迈出探索人工智能世界的第一步。这个提示库就像一座知识的宝库,汇聚了众多经过精心设计和实践验证的提示词样例。为了深入探索DeepSeek提示词样例的丰富内涵,充分挖掘其背后潜藏的无限可能,同时致力于为用户打造更为卓越、便捷且高效的使用体验,DeepSeek官网的API文档匠心独运地为用户呈上了一个专业且全面的专用提示库,如图3-1所示。
2025-06-23 18:00:54
773
原创 3.2.1小节 扣子平台给智能体绑定插件
从上图中可以看到,智能体给出了4条最重要的AI新闻,不过新闻的链接是先显示,要拉动下方的水平滚动条,才能出现新闻标题、摘要、时间等信息。从上图中可以看到,在不给出提示词,也不对插件做任何配置的情况下,智能体会根据头条新闻实时查询出AI相关的新闻,显示的条数不一定。点击确认按钮,打开智能体编排页面,在编排区域>技能>插件中,点击添加插件图标,把“头条新闻”插件加进来。在对话框中再次输入“给我最新的AI新闻”,智能体直接根据提示词给出4条最重要的AI新闻。在右边对话框中,输入“给我最新的AI新闻”。
2025-06-23 09:25:55
336
原创 使用火山方舟创建DeepSeek大模型接入点的方法
如图2-6所示,我们在页面左下角依次单击“系统管理”→“开通管理”菜单,打开“开通管理”页面,在TT大语言模型下点击查询图标题,查询关键字“DeepSeek”,页面上会出现平台支持的DeepSeek大模型。登录火山引擎官网后,如图2-4所示,通过搜索“火山方舟”(或者点击页面上方导航菜单中的“产品”,打开“精选产品”页面),单机“火山方舟”,再单击“控制台”按钮进入“火山方舟管理控制台”页面。接着通过“火山方舟管理控制台”页面左侧导航栏找到“在线推理”菜单项,打开“在线推理”页面,如图2-7所示。
2025-06-20 10:13:19
514
原创 输出JSON格式的DeepSeek在线调用示例
在许多应用场景中,用户需要模型严格按照JSON格式输出数据,以确保输出的结构化和标准化,便于后续逻辑处理和解析。为了满足这一需求,DeepSeek提供了强大的JSON Output 功能,确保模型输出的字符串始终是合法的JSON格式。我们给出一个DeepSeek官方提供的JSON结构化数据处理代码,如图2-26所示。注意:代码中的api_key要改成你自己的授权码。图2-26 JSON结构化数据处理代码。
2025-06-20 08:53:54
316
原创 DeepSeek简介与免费使用
DeepSeek官网是提供大模型服务的开放平台,读者可以通过注册获取API调用服务,首先在DeepSeek官网首页进行注册,如图2-23所示。读者可以根据自己需要的方式进行注册,登录后即可看到用户的用量信息(tokens),如图2-24所示。DeepSeek拥有一套全新的大模型调用方法,既可以通过对话的方式开启大模型的对话,也可以使用API调用的形式来使用大模型。DeepSeek对话窗口如图2-22所示。接下来,读者可以单击左侧菜单中的API keys创建自己的API key,如图2-25所示。
2025-06-19 15:09:58
687
原创 扣子开发优质图文生成器
本章将通过实战演示,详细介绍如何借助扣子开发平台这一强大的工具,让人工智能深度参与并自动完成从文案撰写到配图选择的整个图文创作流程,帮助创作者突破创作瓶颈,提升创作效率与质量,从而更好地适应和驾驭当前的图文创作生态。
2025-06-19 15:00:32
979
原创 【新书介绍】《DeepSeek原生应用与智能体开发实践》
本书围绕DeepSeek大模型应用开发展开,深度融合技术创新与工程实践,内容覆盖大模型应用开发(在线调用、提示词、推理、Agent、工具调用、MCP微调、蒸馏、后训练、RAG)技术栈及其案例。书中原理与案例相融合,注重培养读者的大模型原生应用与智能体开发能力,并构建从理论到落地的完整知识体系。本书配套示例源码、PPT课件、配图PDF文件、读者微信交流群。
2025-06-18 08:30:00
1292
3
原创 OpenCV+Python实战人脸检测
现代社会中信息安全和网络金融安全越来越受重视,信息和金融安全依赖于个人身份认证,个人身份认证所依赖的信息来源于每个人与生俱来的特殊性,如指纹、DNA、人脸等,这是实现身份认证的前提。想要设计一套通用的、能够准确描述每个人身份的数学模型是比较困难的。相对于其他人体特征,人脸具有以下4个优势:自然性。自然性体现在每个生物个体都存在着这种特征。具有自然性的生物特征还有声音、形体等,但是声音容易受到外界干扰,提取时需要在安静的空间进行;
2025-06-18 08:20:56
1197
1
原创 3.5节 扣子开发最新头条新闻智能体
《扣子开发AI Agent智能体应用(人工智能技术丛书)》(宋立桓,王东健,陈铭毅,程东升)【摘要 书评 试读】- 京东图书本节将通过一个实际案例来学习卡片的制作过程。这个案例的作用是调用知乎热榜插件,然后用卡片列表的形式展示给用户。我们要做的卡片示意如图3-38所示,这相当于一个新闻列表的循环。首先要做出一条新闻的样式,再通过循环以列表的形式展示出多条新闻。这个结构可以看作一个两列布局,分为左右两部分内容,左侧是图片,右侧是文本信息。图3-38 新闻列表登录扣子官网,依次单击“个人空间”→“资源库”,打
2025-06-17 11:54:16
640
原创 OpenCV+Python物体计数
(1)打开PyCharm,新建一个项目,项目名称是pythonProject。import cv2bkcolor = (0, 0, 0) #定义黑色txtimage[:] = bkcolor #画布赋值黑色# 在画布上画字符串hello worldcv2.imshow('result', txtimage) # 显示图像cv2.waitKey() # 等待按键命令图18‑2。
2025-06-17 06:58:36
763
原创 《扣子开发智能体应用》配套的课件和视频下载
智能体概述、扣子AI应用开发平台、扣子插件和卡片、扣子工作流详解、基于大模型的企业知识库、提示词编写和优化、扣子数据库、汽车行业智能客服、AI登记助手、图文混合的火爆推文生成器、看图学英语智能助手、抖音文案提取与仿写助手、智能室内设计师、企业营销宣传海报自动生成器、智能客服、自动生成 PPT的智能办公助手、新闻视频自动生成器、多Agent模式旅游助手。请读者自己学习模仿使用,不要任何形式的商用即可。
2025-06-16 16:45:59
297
原创 OpenCV+Python图像加密和解密
最后,使用cv2.imshow()函数显示原始图像、密钥数据(图像)、加密后的图像和解密后的图像。使用cv2.bitwise_xor()函数对图像进行异或操作来实现加密和解密,其加密过程将每个像素的颜色值都与255进行按位异或,从而产生加密图像;比如有两个数198和219,198的二进制形式是1100 0110,219的二进制形式是1101 1011,它们异或后得到的二进制形式是0001 1101,化为十进制数为29。(3)任何数(0或1)与数值1异或,结果变为另外一个数,即0变1,1变0。
2025-06-16 16:25:10
829
原创 扣子工作流的逻辑结构、常见节点与实战示例
例如,你可以在代码节点的输入中引用大模型节点的输出,这样代码节点就可以使用大模型节点的输出。扣子的工作流节点并不是固定的,而是由一系列可以任意添加的节点组成的,每个节点都有其特定的功能和用途。扣子工作流中常见的节点类型如图4-2所示。在图像生成节点中设置模型为人像,输入参数名为input,变量值引用开始节点的renwu,正向提示词为{{input}},如图4-19所示。然后添加两个节点,选择“图像生成”和“画板”,将“开始”节点、“图像生成”节点、“画板”节点、“结束”节点依次串联,如图4-17所示。
2025-06-13 09:14:12
785
原创 扣子数据库实战案例:搭建AI登记助手
图7-30框中的访客信息需要与提示词中设定的询问内容相对应。在“创建智能体”页面,填写智能体基本信息,如图7-22所示,智能体名称为“AI登记助手”(20字以内),智能体功能介绍为“记录访客信息”。如图7-28所示,填写数据表名称(如visitor_registration)和数据表描述(如访客登记),单击星星按钮,让AI自动生成数据表图标,也可使用默认图标,填写完成后,单击“确认”按钮,创建数据表。如图7-33所示,调试完成后,单击“预览与调试”右侧的“记忆”,单击“已存数据库”查看调试后登记的信息。
2025-06-12 10:00:22
1485
原创 OpenCV图像金字塔
一般情况下,我们要处理的是具有固定分辨率的图像。但是在有些情况下,我们需要对同一图像的不同分辨率的子图像进行处理。比如,需要在一幅图像中查找某个目标,如脸,我们不知道目标在图像中的大小。在这种情况下,我们需要创建一组图像,这些图像是具有不同分辨率的原始图像。我们把这组图像叫作图像金字塔(简单来说,就是同一图像的不同分辨率的子图集合)。如果把最大的图像放在底部,最小的放在顶部,看起来就像一座金字塔,故而得名图像金字塔,如图10-1所示。图像金字塔的底部是原始图像,分辨率最高,而顶部则为其低分辨率的近似图像。
2025-06-12 09:52:10
1123
原创 扣子开发汽车行业智能客服示例
在本节中,我们想要创建一个AI客服,用于介绍汽车领域的行业知识,因此需要利用知识库的能力。首先,梳理汽车行业知识,形成FAQ(常见问题解答)。然后,将其上传到知识库中。最后,将知识库配置到AI Agent智能体中,使其能够调用知识库的内容作为回复。完成以上步骤之后,当用户咨询Agent有关汽车领域知识的问题时,Agent将根据FAQ的内容进行回答。传统的机器人客服只能生硬地套用FAQ,缺乏灵活性。
2025-06-11 10:52:50
1781
原创 OpenCV图像旋转
学习基于Qt C++开发OpenCV应用,建议先掌握Qt C++编程。图像旋转是数字图像处理的一个非常重要的环节,是图像的几何变换手法之一。图像旋转算法是图像处理的基础算法。在数字图像处理过程中,经常要用到旋转,例如在进行图像扫描时,需要运用旋转实现图像的倾斜校正;在进行多幅图像的比较、模式识别及对图像进行剪裁和拼接前,都需要进行图像的旋转处理。图像旋转是指图像以某一点为中心旋转一定的角度,形成一幅新的图像的过程。图像旋转通常可以分为两种情况,一种是以坐标原点为中心进行旋转;
2025-06-11 10:40:06
679
原创 R语言ICU患者死亡率预测实战
预测ICU患者死亡率对比较药物的疗效、比较护理的有效性、比较手术的有效性有重要意义,利用机器学习来构建预测模型,辅助临床预测有着重要的意义。
2025-06-10 09:37:51
830
PHP+MySQL动态网站开发全程实例
2012-11-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人