LLMs之LangChain(开发和构建)、LangSmith(生产化/跟踪)、LangServe(部署为API)的基础使用案例教程—利用LangChain开发和构建LLM的应用程

以下是关于 LangChain(开发构建)、LangSmith(生产化/跟踪)、LangServe(部署为 API) 的基础使用案例教程,涵盖功能介绍及完整演示:

LangChain:开发和构建 LLM 应用程序

功能介绍
  1. 核心概念:LangChain 是一个基于大语言模型的应用开发框架[8]。它提供了一系列模块化组件,用于构建复杂的语言模型应用程。

  2. 主要功能:支持多种语言模型提供商、丰富的提示模板、链式调用结构、代理和工具集成等。

使用示例
案例一:基础 LLM 链
  1. 功能描述:利用 Prompt 模板和语言模型组成简单的链路进行响应[1][8]。

  2. 代码实现

    from langchain_openai import ChatOpenAI
    from langchain.prompts import PromptTemplate
    from langchain.chains import LLMChain
    
    # 初始化语言模型
    llm = ChatOpenAI(api_key="<your-openai-api-key>", model="gpt-3.5-turbo")
    
    # 创建提示模板
    prompt = PromptTemplate.from_template("翻译这句话到英文:{sentence}")
    
    # 构建 LLM 链
    chain = LLMChain(llm=llm, prompt=prompt)
    
    # 调用链进行翻译
    result = chain.invoke({
         
         "sentence": "今天是星期五"})
    print(result)
    
  3. 效果展示:输入中文句子,输出对应的英文翻译[1][8]。

案例二:RAG 检索链
  1. 功能描述:通过文档加载器加载数据,向量化后建立检索器索引,利用检索器查询出文档后与问题一起输入语言模型获取响应[1]。

  2. 代码实现

    from langchain.document_loaders import WebBaseLoader
    from langchain.embeddings import OpenAIEmbeddings
    from langchain.vectorstores import FAISS
    from langchain.chains import RetrievalQAChain
    
    # 加载文档
    loader = WebBaseLoader("https://example.com")
    docs = loader.load()
    
    # 向量化并建立索引
    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(docs, embeddings)
    
    # 构建 RAG 检索链
    chain = RetrievalQAChain.from_llm(llm, vectorstore
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值