NEFU 486 魔术球问题 最小路径覆盖

本文介绍了一种利用Dinic算法解决魔术球问题的方法。该问题要求在若干柱子上放置编号球,使得任意两相邻球编号之和为完全平方数,并最大化球的数量。通过构建网络流模型并使用Dinic算法求解最大匹配,进而得到最多能放置的球数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接 魔术球问题


魔术球问题

Time Limit 1000ms

Memory Limit 65536K

description

假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,...的球。
(1)每次只能在某根柱子的最上面放球。
(2)在同一根柱子中,任何2个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在n根柱子上最多能放多少个球。例如,在4 根柱子上最多可放11 个球。
对于给定的n,计算在n根柱子上最多能放多少个球。

							

input

多组数据输入.
每组输入1个正整数n,表示柱子数。

output

每组输出n 根柱子上最多能放的球数。

sample_input

4

sample_output

11

hint

source

线性规划与网络流24题
[ submit][ back][ discuss]



最小路径覆盖=顶点数-最大匹配数。。


在残留网络上增加新的节点和边,然后再增广一次即可


#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>

using namespace std;

#define PB push_back
#define MP make_pair
#define CLR(vis) memset(vis,0,sizeof(vis))
#define MST(vis,pos) memset(vis,pos,sizeof(vis))
#define MAX3(a,b,c) max(a,max(b,c))
#define MAX4(a,b,c,d) max(max(a,b),max(c,d))
#define MIN3(a,b,c) min(a,min(b,c))
#define MIN4(a,b,c,d) min(min(a,b),min(c,d))
#define PI acos(-1.0)
#define INF 0x7FFFFFFF
#define LINF 1000000000000000000LL
#define eps 1e-8

typedef long long ll;
typedef unsigned long long ull;

const int mm=111111;
const int mn=10000;

struct Dinic{

    int node,s,t,edge,ans;

    int ver[mm],cap[mm],flow[mm],next[mm];

    int head[mn],work[mn],dis[mn],q[mn];

    void init(int _node,int _s,int _t)
    {
       node=_node, s=_s, t=_t;
       for(int i=0;i<node;++i)
         head[i]=-1;
       edge=ans=0;
    }


     void addedge(int u,int v,int c)
     {
       ver[edge]=v,cap[edge]=c,flow[edge]=0,next[edge]=head[u],head[u]=edge++;
       ver[edge]=u,cap[edge]=0,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
     }


     bool Dinic_bfs()
     {
         int i,u,v,l,r=0;
         for(i=0;i<node;++i)  dis[i]=-1;
         dis[ q[r++]=s ] = 0;
         for(l=0;l<r;l++)
         {
            for(i=head[ u=q[l] ]; ~i ;i=next[i])
               if(flow[i]<cap[i] && dis[ v=ver[i] ]<0)
               {
                 dis[ q[r++]=v ]=dis[u]+1;
                 if(v==t) return 1;
               }
          }
          return 0;
      }

      int Dinic_dfs(int u,int exp)
      {
          if(u==t) return exp;
          for(int &i=work[u],v,temp; ~i ;i=next[i])
          {
             if(flow[i]<cap[i] && dis[ v=ver[i] ]==dis[u]+1 && ( temp=Dinic_dfs(v,min(exp,cap[i]-flow[i])) )>0)
             {
               flow[i]+=temp;
               flow[i^1]-=temp;
               return temp;
             }
          }
          return 0;
      }

      int Dinic_flow()
      {
         int res,i;
         while(Dinic_bfs())
         {
           for(i=0;i<node;++i) work[i]=head[i];
           while( ( res=Dinic_dfs(s,INF) ) )  ans+=res;
         }
         return  ans ;
     }
};

bool judge(int a)
{
    int b=sqrt(a);
    if(b*b==a)
        return true;
    else return false;
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int num=0;
        Dinic e;
        e.init(2*n+2,0,1);
        for(int i=2;i<=2*n+1;i++)
        {
            if(i%2==0)
             e.addedge(e.s,i,1);
            else
             e.addedge(i,e.t,1);
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=1;j<i;j++)
            {
                if(judge(i+j))
                    e.addedge(2*j,2*i+1,1);
            }
        }
        num=n;
        int x,y;
        while(num-e.Dinic_flow()<=n)
        {
            num++;
            e.head[x=e.node++]=-1;
            e.head[y=e.node++]=-1;
            e.addedge(e.s,x,1);
            e.addedge(y,e.t,1);
            for(int i=1;i<num;i++)
            {
                if(judge(i+num))
                    e.addedge(2*i,2*num+1,1);
            }
        }
        cout<<num-1<<endl;
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值