时间序列预测是一项重要的任务,对于许多领域如金融、交通、气象等都具有重要的应用价值。在这篇文章中,我将介绍如何使用Temporal Convolutional Networks(TCN)来实现时间序列预测。TCN是一种基于卷积神经网络的模型,能够学习到序列中的长期依赖关系,并用于未来数值的预测。
首先,我们需要导入必要的库和数据集。在这个示例中,我们将使用PyTorch作为深度学习框架,并使用一个简单的时间序列数据集进行演示。
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader