前言
最近和几个AI创业的朋友聊天,发现一个有趣的现象:大家都在搞Agent,但聊起具体实现时,基本都在Message Flow这个环节栽过跟头。
说实话,我自己也踩过这个坑。两年前刚开始做Agent产品时,觉得不就是让模型调用几个API嘛,有多难?结果发现,真正的难点不在模型调用,而在于如何设计一个稳定、可扩展的消息流架构。
今天想跟大家聊聊这个话题,算是给准备入坑或者正在坑里的朋友们一些参考。
消息结构设计,细节决定成败
当年Chaptgpt刚出来,刚开始做的时候,我天真地以为消息结构就是简单的JSON:
{
"role": "user",
"content": "帮我查一下天气"
}
结果发现,真实场景复杂太多了。你需要考虑:
- • 工具调用结果怎么存?
- • 多步推理的中间状态怎么管理?
- • 错误重试时上下文怎么保持?
- • 不同Agent间怎么传递状态?
后来我参考了OpenAI的ChatML格式,采用了更结构化的设计:
class Message:
role: str # system/user/assistant/tool
content: str
tool_calls: Optional[List[ToolCall# 自定义字段
timestamp: datetime
这个设计的好处是,你可以在metadata里塞各种自定义信息,比如推理步骤、置信度、甚至是调试信息。
Prompt构造,从简单到复杂
早期我们用的是最简单的提示词拼接,就是把系统指令、历史对话、当前问题串起来。但很快发现问题:
- \1. Token消耗太大
- \2. 模型容易"忘记"重要指令
- \3. 多轮对话容易跑偏
现在我们采用的是模板化+动态注入的方式:
class PromptTemplate:
def__init__(self):
self.system_prompt = "你是一个..."
self.few_shot_examples = [...] # 少样本示例
self.current_context = None
defbuild_prompt(self, user_input, context=None):
# 动态选择最相关的示例
relevant_examples = self.select_examples(user_input)
# 注入当前上下文
if context:
self.current_context = context
returnself._assemble_prompt(...)
关键是要做到"该详细时详细,该简洁时简洁"。比如第一轮对话给出完整指令,后续轮次只传递必要的上下文。但是动态拼装如果修改了系统提示词也有KV Cache命中问题,以及模型不稳定问题,所以多智能体是有必要的,这是后话,后面可以详细聊。
主流框架的设计哲学
过去一年,我基本把市面上主流的Agent框架都试了一遍。每个框架都有自己的设计哲学:
AutoGPT系:单智能体,大而全,适合演示但生产环境容易失控。最大的问题是缺乏有效的任务分解机制,经常陷入无限循环。
LangChain系:模块化设计,生态丰富,但学习曲线陡峭。说实话,文档写得不够清晰,经常需要看源码才能理解。
LangGraph系:图结构设计很优雅,多智能体协作机制不错。我们现在的架构很大程度上参考了它的设计。
CrewAI系:角色分工明确,适合团队协作场景。但自定义程度相对较低。
我觉得没有完美的框架,关键是要根据自己的业务场景选择合适的设计模式,所以框架只限于MVP验证(比如五月初我曾在公司内部用SmoleAgents框架一周时间内搭了一个类似Manus的自主智能体全栈应用,支持FunctionCall-ReAct、MCP-ReAct、CodeAct三种运行模式,如图),商业级长期迭代的项目一定要定制化智能体架构,仔细设计Message Flow。
上下文管理,被低估的核心能力
这是我踩坑最深的地方。一开始觉得,上下文管理不就是把对话历史存起来嘛?
结果发现,真正的挑战在于:
- 什么时候记住? 不是所有对话都需要长期记住
- 什么时候忘记? Token有限,必须选择性遗忘
- 怎么高效检索? 用户换个说法,系统就找不到相关记忆了
- 多线程怎么隔离? 不同用户的上下文不能串了
我们现在的解决方案是三层记忆架构:
- • 工作记忆:当前会话的完整上下文
- • 情节记忆:重要事件和决策节点
- • 语义记忆:通过向量检索的知识库
class MemoryManager:
def __init__(self):
self.working_memory = [] # 当前对话
self.episodic_memory = VectorStore() # 重要片段
self.semantic_memory = KnowledgeBase() # 领域知识
def store_message(self, message):
self.working_memory.append(message)
# 判断是否值得长期保存
if self.is_important(message):
self.episodic_memory.add(message)
我的一些思考
做了快两年Agent,尤其是企业级Agent,从workflow范式到agentic范式,最大的感受是:技术细节决定产品体验上限,复杂度不会消失,只会转移。
用户不关心你用了什么模型、什么框架,他们只关心Agent是否能稳定地完成任务。而稳定性,很大程度上取决于Message Flow的设计质量。
现在市面上的Agent产品,90%都卡在工程实现上很难做到“丝滑”。模型能力已经足够了,但系统架构跟不上。特别是在多轮对话、错误处理、状态管理这些"脏活累活"上,大家都在重复造轮子。
我觉得,未来一两年,Agent开发会逐渐标准化,但上限永远在定制化。就像现在的Web开发一样,会有成熟的框架和最佳实践,但所有最佳场景适配的框架还是需要架构师去设计的。但在那之前,谁能在Message Flow设计上做得更好,谁就有先发优势。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
