今天,PPIO首发上线百度文心4.5系列开源模型。
文心4.5系列开源模型共10款,涵盖了激活参数规模分别为47B和3B的混合专家(MoE)模型(最大的模型总参数量为424B),以及0.3B的稠密参数模型。
实验结果显示,该系列模型在多个文本和多模态基准测试中达到SOTA水平,在指令遵循、世界知识记忆、视觉理解和多模态推理任务上效果尤为突出。
如果你是 PPIO 新用户,前往官网填写邀请码【JMZ5F8】注册还可得 15 元代金券。此外,通过你的专属邀请码每成功邀请一位好友并完成实名认证,还可以额外获得 30 元代金券。
1. 模型技术优势
(1)多模态混合专家模型预训练
文心4.5系列开源模型通过在文本和视觉两种模态上进行联合训练,更好地捕捉多模态信息中的细微差别,提升在文本生成、图像理解以及多模态推理等任务中的表现。为了让两种模态学习时互相提升,该模型提出了一种多模态异构混合专家模型结构,结合了多维旋转位置编码,并且在损失函数计算时,增强了不同专家间的正交性,同时对不同模态间的词元进行平衡优化,达到多模态相互促进提升的目的。
(2)高效训练推理框架
文心4.5系列开源模型提出了异构混合并行和多层级负载均衡策略。通过节点内专家并行、显存友好的流水线调度、FP8混合精度训练和细粒度重计算等多项技术,显著提升了预训练吞吐。推理方面,文心4.5系列开源模提出了多专家并行协同量化方法和卷积编码量化算法 ,实现了效果接近无损的4-bit 量化和2-bit 量化。此外,还实现了动态角色转换的预填充、解码分离部署技术,可以更充分地利用资源,提升文心4.5 MoE 模型的推理性能。基于飞桨框架,文心4.5系列开源模型在多种硬件平台均表现出优异的推理性能。
(3)针对模态的后训练
为了满足实际场景的不同要求,文心4.5系列开源模型对预训练模型进行了针对模态的精调。其中,大语言模型针对通用语言理解和生成进行了优化,多模态大模型侧重于视觉语言理解,支持思考和非思考模式。每个模型采用了SFT、DPO或UPO(Unified Preference Optimization,统一偏好优化技术)的多阶段后训练。
2. 如何在 PPIO 使用百度文心4.5系列开源模型?
1.直接在模型广场体验
到 PPIO派欧云官网注册后,找到模型广场下的百度文心4.5系列开源模型直接进行体验。
2. 在第三方平台上集成
除了在自己开发的应用程序中集成 API ,你也可以直接通过第三方应用来调用 PPIO API 的能力。目前 PPIO 支持在 20+ 主流平台中调用平台模型,具体包括:
-
通用对话客户端:CherryStudio、Chatbox、LobeChat、Nextchat、ChatHub
-
通用AI助手:OpenManus、UI-TARS
-
代码开发工具:Cursor、CLINE
-
开发/ API 平台:Dify、OneAPI、RAGFlow、FastGPT
-
生产力套件集成:Word、WPS Office AI,这些是办公软件集成AI功能。
-
智能翻译工具:沉浸式翻译、欧路词典、流畅阅读、沉浸式导读。
-
知识管理工具:思源笔记、Obsidian、AnythingLLM
3. 在自己开发的应用程序中集成 API (针对开发人员)
通过 PPIO 的 API 接口,将百度文心4.5系列开源模型无缝集成到你的应用程序、工作流或聊天机器人。PPIO 提供多语言 SDK(cURL、Python、JavaScript 等)。
如果是单轮或多轮对话应用、轻量集成、普通 chatbot 项目,可直接调用 API。以 Python 为例:
from openai import OpenAI
base_url = "https://api.ppinfra.com/v3/openai"
api_key = "<您的 API Key>"
model = "baidu/ernie-4.5-300b-a47b-paddle"
client = OpenAI(
base_url=base_url,
api_key=api_key,
)
stream = True # or False
max_tokens = 1000
response_format = { "type": "text" }
chat_completion_res = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": "Hi there!",
}
],
stream=stream,
extra_body={
}
)
if stream:
for chunk in chat_completion_res:
print(chunk.choices[0].delta.content or "", end="")
else:
print(chat_completion_res.choices[0].message.content)
主要特点:
-
OpenAI 兼容接口:使用
/v3/openai
统一接口,兼容openai.ChatCompletion
调用方式。 -
无需部署模型:无需管理模型权重或基础设施,后端完全托管。
-
输出方式:支持流式和一次性返回